

Smart, Creative and Entrepreneurial

CCA220-Analisis dan Perancangan system Informasi

Dosen Pengampu :

www.esaunggul.ac.id

5165-Kundang K Juman, Ir, MMSI

Prodi Teknik Informatika dan Sistem Informasi - Fakultas Ilmu Komputer

Chapter 13 Designing Databases

Major Topics

- Files
- Databases
- Normalization
- Key design
- Using the database
- Data warehouses
- Data mining

Data Storage Design Objectives

The objectives in the design of data storage organization are:

- The data must be available when the user wants to use it.
- The data must have integrity.
 - It must be accurate and consistent.
- Efficient storage of data as well as efficient updating and retrieval.

Data Storage Design Objectives

- The objectives in the design of data storage organization are (continued):
 - The information retrieval be purposeful.
 - The information obtained from the stored data must be in an integrated form to be useful for:
 - Managing.
 - Planning.
 - Controlling.
 - Decision making.

Approaches to Data Storage

There are two approaches to the storage of data in a computer system:

- Store the data in individual files each unique to a particular application.
- Storage of data in a computer-based system involves building a database.
 - A database is a formally defined and centrally controlled store of data intended for use in many different applications.

Files

- A file can be designed and built quite rapidly, and the concerns for data availability and security are minimized.
- Analysts can choose an appropriate file structure according to the required processing speed of the particular application system.

Objectives of Effective Databases

The effectiveness objectives of the database include:

- Ensuring that data can be shared among users for a variety of applications.
- Maintaining data that are both accurate and consistent.
- Ensuring all data required for current and future applications will be readily available.

Objectives of Effective Databases

- The effectiveness objectives of the database include (continued):
 - Allowing the database to evolve and the needs of the users to grow.
 - Allowing users to construct their personal view of the data without concern for the way the data are physically stored.

Metadata

Metadata is the information that describes data in the file or database.

 Used to help users understand the form and structure of the data

Reality, Data, and Metadata

Figure 13.1 Reality, data, and metadata.

Entity-Relationship Concepts

- Entities are objects or events for which data is collected and stored.
- An entity subtype represents data about an entity that may not be found on every record.
- Relationships are associations between entities.

Entities

A distinct collection of data for one person, place, thing, or event.

Customer

Entity Subtype

- An entity subtype is a special one-to-one relationship used to represent additional attributes, which may not be present on every record of the first entity.
- This eliminates null fields on the primary database.
- For example, a company that has preferred customers, or student interns may have special field.

Associative Entity

- Associative Entity links two entities
- An associative entity can only exist between two entities

Attributive Entity

 An attributive Entity - describes attributes, especially repeating elements.

Entity-Relationship Diagram Symbols

Figure 13.3 The entity-relationship symbols and their meanings.

Symbol	Official Explanation	What It Really Means
	Entity	A class of persons, places, or things
	Associative entity	Used to join two entities
	Attributive entity	Used for repeating groups
	To 1 relationship	Exactly one
	To many relationship	One or more
	To 0 or 1 relationship	Only zero or one
0∢	To 0 or more relationship	Can be zero, one, or more
	To more than 1 relationship	Greater than one

Relationships

- Relationships may be:
 - One-to-one.
 - One-to-many.
 - Many-to-many.
- A single vertical line represents one.
- A circle represents zero or none.
- A crows foot represents many.

Relationships

Self-Join

A self-join is when a record has a relationship with another record on the same file.

Entity-Relationship Diagram Example

Figure 13.4 The entity-relationship diagram for patient treatment. Attributes can be listed alongside the entities. In each case, the key is underlined.

Attributes, Records, and Keys

- Attributes are a characteristic of an entity, sometimes called a data item.
- Records are a collection of data items that have something in common.
- Keys are data items in a record used to identify the record.

Key Types

• Key types are:

- Primary key, unique for the record.
- Secondary key, a key which may not be unique, used to select a group of records.
- Concatenated key, a combination of two or more data items for the key.
- Foreign key, a data item in one record that is the key of another record.

Files

- A file contains groups of records used to provide information for operations, planning, management, and decision making.
- Files can be used for storing data for an indefinite period of time, or they can be used to store data temporarily for a specific purpose.

File Types

Types of files available are:

- Master file.
- Table file.
- Transaction file.
- Work file.
- Report file.

Master and Transaction Files

Master files

- Have large records
- Contain all pertinent information about an entity
- Transaction records
 - Are short records
 - Contain information used to update master files

File Organization

- The different organizational structures for file design are:
 - Sequential organization.
 - Linked lists.
 - Hashed file organization.

Databases

- A database is intended to be shared by many users.
- There are three structures for storing database files:
 - Relational database structures.
 - Hierarchical database structures (older).
 - Network database structures (older).

Logical and Physical Database Design

Figure 13.10 Database design includes synthesizing user reports, user views, and logical and physical designs.

Normalization

 Normalization is the transformation of complex user views and data to a set of smaller, stable, and easily maintainable data structures.

Normalization (Continued)

- Normalization creates data that are stored only once on a file.
- The exception is key fields.
- The data structures are simpler and more stable.
- The data is more easily maintained.

Three Steps of Data Normalization

The three steps of data normalization are:

- Remove all repeating groups and identify the primary key.
- Ensure that all nonkey attributes are fully dependent on the primary key.
- Remove any transitive dependencies, attributes that are dependent on other nonkey attributes.

Three Steps of Normalization

Data Model Diagrams

- Data model diagrams are used to show relationships between attributes.
- An oval represents an attribute.
- A single arrow line represents one.
- A double arrow line represents many.

Customer Salesperson Number Number

Data Model Example

First Normal Form (1NF)

- Remove any repeating groups.
- All repeating groups are moved into a new table.
- Foreign keys are used to link the tables.
- When a relation contains no repeating groups, it is in the first normal form.

Second Normal Form (2NF)

- Remove any partial dependencies.
- A partial dependency is when the data are only dependent on a part of a key field.
- A relation is created for the data that are only dependent on part of the key and another for data that are dependent on both parts.

Third Normal Form (3NF)

- Remove any transitive dependencies.
- A transitive dependency is when a relation contains data that are not part of the entity.
- The problem with transitive dependencies is updating the data.
- A single data item may be present on many records.

Entity-Relationship Diagram and Record Keys

The entity-relationship diagram may be used to determine record keys.

- When the relationship is one-to-many, the primary key of the file at the one end of the relationship should be contained as a foreign key on the file at the many end of the relationship.
- A many-to-many relationship should be divided into two one-to-many relationships with an associative entity in the middle.

Guidelines for Creating Master Files or Database Relations

Guidelines for creating master files or database relations are:

- Each separate entity should have it's own master file or database relation.
- A specific, nonkey data field should exist on only one master file or relation.
- Each master file or relation should have programs to create, read, update, and delete records.

Integrity Constraints

There are three integrity constraints that help to ensure that the database contains accurate data:

- Entity integrity constraints, which govern the composition of primary keys.
- Referential integrity, which governs the denature of records in a one-to-many relationship.
- Domain integrity.

Entity Integrity

Entity integrity constraints are rules for primary keys:

- The primary key cannot have a null value.
- If the primary key is a composite key, none of the fields in the key can contain a null value.

Referential Integrity

- Referential integrity governs the denature of records in a one-to-many relationship.
- Referential integrity means that all foreign keys in one table (the child table) must have a matching record in the parent table.

Referential Integrity (Continued)

Referential integrity includes:

- You cannot add a record without a matching foreign key record.
- You cannot change a primary key that has matching child table records.
 - A child table has a foreign key for a different record.
- You cannot delete a record that has child records.

Referential Integrity

- A restricted database updates or deletes a key only if there are no matching child records.
- A cascaded database will delete or update all child records when a parent record is deleted or changed.
- The parent triggers the changes.

Domain Integrity

- Domain integrity defines rules that ensure that only valid data are stored on database records
 - Domain integrity has two forms:
 - Check constraints, which are defined at the table level.
 - Rules, which are defined as separate objects and may be used within a number of fields.

Retrieving and Presenting Database Data

- The guidelines to retrieve and present data are:
 - Choose a relation from the database.
 - Join two relations together.
 - Project columns from the relation.
 - Select rows from the relation.
 - Derive new attributes.
 - Index or sort rows.
 - Calculate totals and performance measures.
 - Present data.

Denormalization

Denormalization is the process of taking the logical data model and transforming it into an efficient physical model.

Data Warehouses

Data warehouses are used to organize information for quick and effective queries.

Data Warehouses and Database Differences

- In the data warehouse, data are organized around major subjects.
- Data in the warehouse are stored as summarized rather than detailed raw data.
- Data in the data warehouse cover a much longer time frame than in a traditional transaction-oriented database.

Data Warehouses and Database Differences (Continued)

- Data warehouses are organized for fast queries.
- Data warehouses are usually optimized for answering complex queries, known as OLAP.
- Data warehouses allow for easy access via data-mining software called software.

Data Warehouses and Database Differences (Continued)

- Data warehouses include multiple databases that have been processed so that data are uniformly defined, containing what is referred to as "clean" data.
- Data warehouses usually contain data from outside sources.

Online Analytic Processing (OLAP)

- Online analytic processing (OLAP) is meant to answer decision makers' complex questions by defining a multidimensional database.
- Data mining, or knowledge data discovery (KDD), is the process of identifying patterns that a human is incapable of detecting.

Data Mining Decision Aids

Data mining has a number of decision aids available, including:

- Statistical analysis.
- Decision trees.
- Neural networks.
- Intelligent agents.
- Fuzzy logic.
- Data visualization.

Data Mining Patterns

Data mining patterns that decision makers try to identify include:

- Associations, patterns that occur together.
- Sequences, patterns of actions that take place over a period of time.
- Clustering, patterns that develop among groups of people.
- Trends, the patterns that are noticed over a period of time.

Web Based Databases and XML

- Web-based databases are used for sharing data.
- Extensible markup language (XML) is used to define data used primarily for business data exchange over the Web.