
CCJ-123-DASAR
PENGEMBANGAN PERANGKAT

LUNAK (PERTEMUAN-12)

Dosen Pengampu :

5165-Kundang K Juman,
Prodi Teknik Informatika Fakultas Ilmu Komputer

2

Operating Systems Overview

Chapter 2

3

Operating System

 Is a program that controls the execution of

application programs

OS must relinquish control to user programs

and regain it safely and efficiently

Tells the CPU when to execute other pgms

 Is an interface between the user and

hardware

 Masks the details of the hardware to

application programs

Hence OS must deal with hardware details

4

Services Provided by the OS

 Facilities for Program creation

editors, compilers, linkers, and debuggers

 Program execution

 loading in memory, I/O and file initialization

 Access to I/O and files

deals with the specifics of I/O and file formats

 System access

Protection in access to resources and data

Resolves conflicts for resource contention

5

Services Provided by the OS

 Error Detection

 internal and external

hardware errors

 memory error

 device failure

 software errors

 arithmetic overflow

 access forbidden

memory locations

 Inability of OS to grant

request of application

 Error Response

 simply report error to

the application

 Retry the operation

 Abort the application

6

Services Provided by the OS

 Accounting

collect statistics on resource usage

monitor performance (eg: response time)

used for system parameter tuning to improve

performance

useful for anticipating future enhancements

used for billing users (on multiuser systems)

7

Evolution of an Operating System

 Must adapt to hardware upgrades and new

types of hardware. Examples:

Character vs graphic terminals

 Introduction of paging hardware

 Must offer new services, eg: internet

support

 The need to change the OS on regular

basis place requirements on it’s design

modular construction with clean interfaces

object oriented methodology

8

Simple Batch Systems

 Are the first operating systems (mid-50s)

 The user submit a job (written on card or

tape) to a computer operator

 The computer operator place a batch of

several jobs on a input device

 A special program, the monitor, manages

the execution of each program in the batch

 Resident monitor is in main memory and

available for execution

 Monitor utilities are loaded when needed

9

The Monitor

 Monitor reads jobs one at a

time from the input device

 Monitor places a job in the

user program area

 A monitor instruction

branches to the start of the

user program

 Execution of user pgm

continues until:

 end-of-pgm occurs

 error occurs

 Causes the CPU to fetch its

next instruction from Monitor

10

Job Control Language (JCL)

 Is the language to provide

instructions to the monitor

 what compiler to use

 what data to use

 Example of job format: ------->>

 $FTN loads the compiler and

transfers control to it

 $LOAD loads the object code

(in place of compiler)

 $RUN transfers control to user

program

$JOB

$FTN

...

FORTRAN
program

...

$LOAD

$RUN

...

Data

...

$END

11

Job Control Language (JCL)

 Each read instruction (in user pgm) causes

one line of input to be read

 Causes (OS) input routine to be invoke

checks for not reading a JCL line

skip to the next JCL line at completion of user

program

12

Batch OS

 Alternates execution between user

program and the monitor program

 Relies on available hardware to effectively

alternate execution from various parts of

memory

13

Desirable Hardware Features

 Memory protection

do not allow the memory area containing the

monitor to be altered by user programs

 Timer

prevents a job from monopolizing the system

an interrupt occurs when time expires

14

Desirable Hardware Features

 Privileged instructions

can be executed only by the monitor

an interrupt occurs if a program tries these

instructions

 Interrupts

provides flexibility for relinquishing control to

and regaining control from user programs

15

Multiprogrammed Batch Systems

 I/O operations are exceedingly slow

(compared to instruction execution)

 A program containing even a very small

number of I/O ops, will spend most of its

time waiting for them

 Hence: poor CPU usage when only one

program is present in memory

16

Multiprogrammed Batch Systems

 If memory can hold several programs, then

CPU can switch to another one whenever a

program is awaiting for an I/O to complete

 This is multitasking (multiprogramming)

17

Requirements for Multiprogramming

 Hardware support:

 I/O interrupts and (possibly) DMA

 in order to execute instructions while I/O device

is busy

Memory management

several ready-to-run jobs must be kept in

memory

Memory protection (data and programs)

 Software support from the OS:

Scheduling (which program is to be run next)

To manage resource contention

18

Example: three jobs are submitted

 Almost no contention for resources

 All 3 can run in minimum time in a multitasking

environment (assuming JOB2/3 have enough CPU

time to keep their I/O operations active)

JOB1 JOB2 JOB3

Type of job Heavy compute Heavy I/O Heavy I/O

Duration 5 min. 15 min. 10 min.

Memory req. 50K 100 K 80 K

Need disk? No No Yes

Need terminal No Yes No

Need printer? No No Yes

19

Advantages of Multiprogramming

Uniprogramming Multiprogramming

Processor use 17% 33%

Memory use 33% 67%

Disk use 33% 67%

Printer use 33% 67%

Elapsed time 30 min. 15 min.

Throughput rate 6 jobs/hr 12 jobs/hr

Mean response time 18 min. 10 min.

20

Time Sharing Systems (TSS)

 Batch multiprogramming does not support

interaction with users

 TSS extends multiprogramming to handle multiple

interactive jobs

 Processor’s time is shared among multiple users

 Multiple users simultaneously access the system

through terminals

21

Time Sharing Systems (TSS)

 Because of slow human reaction time, a typical

user needs 2 sec of processing time per minute

 Then (about) 30 users should be able to share the

same system without noticeable delay in the

computer reaction time

 The file system must be protected (multiple

users…)

22

Difficulties with OS Design

 Improper synchronization

ensure a program waiting for an I/O device

receives the signal

 Failed mutual exclusion

must permit only one program at a time to

perform a transaction on a portion of data

 Deadlock

 It might happen that 2 or more pgms wait

endlessly after each other to perform an

operation.

23

An example of deadlock

 Program A wants to copy from disk1 to

disk2 and takes control of disk1

 Program B wants to copy from disk2 to

disk1 and takes control of disk2

 Program A must wait that program B

releases disk2 and program B must wait

that program A releases disk1

 Program A and B will wait forever

24

Major Achievements of OS

 To meet the difficult requirements of

multiprogramming and time sharing, there

have been 5 major achievements by OS:

Processes

Memory management

 Information protection and security

Scheduling and resource management

System structure

25

Process

 Introduced to obtain a systematic way of

monitoring and controlling pgm execution

 A process is an executable program with:

 associated data (variables, buffers…)

 execution context: ie. all the information that

 the CPU needs to execute the process

• content of the processor registers

 the OS needs to manage the process:

• priority of the process

• the event (if any) after which the process is waiting

• other data (that we will introduce later)

26

A simple implementation of processes

 The process index

register contains the

index into the process

list of the currently

executing process (B)

 A process switch from

B to A consist of

storing (in memory)

B’s context and

loading (in CPU

registers) A’s context

 A data structure that

provides flexibility (to

add new features)

27

Memory Management

 The key contribution is virtual memory

 It allows programs to address memory

from a logical point of view without regard

to the amount that is physically available

 While a program is running only a portion

of the program and data is kept in (real)

memory

 Other portions are kept in blocks on disk

 the user has access to a memory space that is

larger than real memory

28

Virtual Memory

 All memory references made by a program

are to virtual memory which can be either

a linear address space

a collection of segments (variable-length blocks)

 The hardware (mapper) must map virtual

memory address to real memory address

 If a reference is made to a virtual address

not in memory, then

 (1) a portion of the content of real memory is

swapped out to disk

 (2) the desired block of data is swapped in

29

File System

 Implements long-term store (often on disk)

 Information stored in named objects called

files

a convenient unit of access and protection for

OS

 Files (and portions) may be copied into

virtual memory for manipulation by

programs

30

Security and Protection

 Access control to resources

 forbid intruders (unauthorized users) to enter

the system

 forbid user processes to access resources

which they are not authorized to

31

Scheduling and Resource
Management

 Differential responsiveness

discriminate between different classes of jobs

 Fairness

give equal and fair access to all processes of

the same class

 Efficiency

maximize throughput, minimize response time,

and accommodate as many users as possible

32

Key Elements for Scheduling

 OS maintains queues of processes

waiting for some resource

Short term queue of processes in memory

ready to execute

The dispatcher (short term scheduler) decides

who goes next

Long term queue of new jobs waiting to use

the system

OS must not admit too many processes

A queue for each I/O device consisting of

processes that want to use that I/O device

33

System Structure

 Because of it’s enormous complexity, we

view the OS system as a series of levels

 Each level performs a related subset of

functions

 Each level relies on the next lower level to

perform more primitive functions

 Well defined interfaces: one level can be

modified without affecting other levels

 This decomposes a problem into a number

of more manageable sub problems

34

Characteristics of Modern Operating
Systems

 New design elements were introduced

recently

 In response to new hardware development

multiprocessor machines

high-speed networks

 faster processors and larger memory

 In response to new software needs

multimedia applications

 Internet and Web access

Client/Server applications

35

Microkernel architecture

 Only a few essential functions in the kernel

primitive memory management (address space)

 Interprocess communication (IPC)

basic scheduling

 Other OS services are provided by

processes running in user mode (servers)

device drivers, file system, virtual memory…

 More flexibility, extensibility, portability…

 A performance penalty by replacing service calls

with message exchanges between process...

36

Multithreading

 A process is a collection of one or more threads

that can run simultaneously

 Useful when the application consists of several

tasks that do not need to be serialized

 Gives the programmer a greater control over the

timing of application-related events

 All threads within the same process share the

same data and resources and a part of the

process’s execution context

 It is easier to create or destroy a thread or switch

among threads (of the same process) than to do

these with processes

37

Symmetric Multiprocessing (SMP)

 A computer with multiple processors

 Each processor can perform the same functions

and share same main memory and I/O facilities

(symmetric)

 The OS schedule processes/threads across all the

processors (real parallelisme)

 Existence of multiple processors is transparent to

the user.

 Incremental growth: just add another CPU!

 Robustness: a single CPU failure does not halt the

system, only the performance is reduced.

38

Example of parallel execution on SMP

