
CCJ-123-DASAR
PENGEMBANGAN PERANGKAT

LUNAK (PERTEMUAN-13)

Dosen Pengampu :

5165-Kundang K Juman,
Prodi Teknik Informatika Fakultas Ilmu Komputer

A. Frank - P. Weisberg

Operating Systems

File System

Implementation

3 A. Frank - P. Weisberg

File System Implementation

• File-System Structure

• File-System Implementation

• Allocation Methods

• Free-Space Management

• Efficiency and Performance

• Recovery

4 A. Frank - P. Weisberg

File-System Structure

• File structure:

– Logical storage unit

– Collection of related information

• File system resides on secondary storage (disks):

– Provided user interface to storage, mapping logical to physical.

– Provides efficient and convenient access to disk by allowing data to be stored,

located retrieved easily.

• Disk provides in-place rewrite and random access:

– I/O transfers performed in blocks of sectors (usually 512 bytes).

• File control block – storage structure consisting of information

about a file.

• Device driver controls the physical device.

• File system organized into layers.

5

File System Software Architecture

A. Frank - P. Weisberg

6 A. Frank - P. Weisberg

A Typical File Control Block (FCB)

7 A. Frank - P. Weisberg

In-Memory File System Structures

(a) Opening a file (b) Reading a file

8 A. Frank - P. Weisberg

Virtual File Systems

• Virtual File Systems (VFS) provide an object-

oriented way of implementing file systems.

• VFS allows the same system call interface

(the API) to be used for different types of file

systems.

• The API is to the VFS interface, rather than

any specific type of file system.

9 A. Frank - P. Weisberg

Schematic View of Virtual File System

10 A. Frank - P. Weisberg

Allocation Methods

• An allocation method refers to how

disk blocks are allocated for files:

1. Contiguous allocation

2. Chained/Linked allocation

3. Indexed allocation

4. Combined schemes

11 A. Frank - P. Weisberg

Contiguous Allocation Example

(a) Contiguous allocation of disk space for 7 files.

(b) The state of the disk after files D and F have been removed.

12 A. Frank - P. Weisberg

Contiguous Allocation

• Each file occupies a set of contiguous
blocks on the disk.

• Simple: only starting location (block #)
and length (number of blocks) required.

• Enables random access.

• Wasteful of space (dynamic storage-
allocation problem).

• Files cannot grow.

13 A. Frank - P. Weisberg

Contiguous File Allocation Example

14 A. Frank - P. Weisberg

Contiguous file allocation (after compaction)

15 A. Frank - P. Weisberg

Extent-Based Systems

• Many newer file systems (i.e., Veritas File

System) use a modified contiguous allocation

scheme.

• Extent-based file systems allocate disk blocks

in extents.

• An extent is a contiguous block of disks:

– Extents are allocated for file allocation.

– A file consists of one or more extents.

16 A. Frank - P. Weisberg

Chained/Linked Allocation Example

17 A. Frank - P. Weisberg

Chained Allocation

• Each file is a linked list of disk blocks: blocks

may be scattered anywhere on the disk.

• Simple: need only starting address.

• Free-space management: no waste of space.

• No random access.

pointerblock =

18 A. Frank - P. Weisberg

Chained File Allocation Example

19 A. Frank - P. Weisberg

Chained File Allocation (after consolidation)

20 A. Frank - P. Weisberg

Another Chained Allocation Example

21 A. Frank - P. Weisberg

Linked List Allocation Using a Table in Memory

22 A. Frank - P. Weisberg

File-Allocation Table (FAT) Example

23 A. Frank - P. Weisberg

Indexed Allocation

• Brings all pointers together into

the index block.

• It’s a logical view.

• Need index table.

• Provides random access.

• Dynamic access without external

fragmentation, but have overhead of

index block.

index table

24 A. Frank - P. Weisberg

Indexed File Allocation Example

25 A. Frank - P. Weisberg

Indexed File Allocation (variable-size)

26 A. Frank - P. Weisberg

Indexed Allocation Mapping Example

outer-index

index table file

27

Comparison of file allocation methods

A. Frank - P. Weisberg

28 A. Frank - P. Weisberg

Combined Scheme: UNIX UFS (4K bytes per block)

29 A. Frank - P. Weisberg

Free-Space Management (1)

• Bit vector (n blocks)

…

0 1 2 n-1

bit[i] =

 0 block[i] free

1 block[i] occupied

Block number calculation

(number of bits per word) *

(number of 0-value words) +

offset of first 1 bit

30 A. Frank - P. Weisberg

Free-Space Management (2)

• Bit map requires extra space. For example:

block size = 212 bytes

disk size = 230 bytes (1 gigabyte)

n = 230/212 = 218 bits (or 32K bytes)

• Easy to get contiguous files.

• Linked list (free list):

– Cannot get contiguous space easily.

– No waste of space.

• Grouping

• Counting

31 A. Frank - P. Weisberg

Free-Space Management (3)

• Need to protect:

– Pointer to free list.

– Bit map:

• Must be kept on disk.

• Copy in memory and disk may differ.

• Cannot allow for block[i] to have a situation where
bit[i] = 1 in memory and bit[i] = 0 on disk.

– Solution:

• Set bit[i] = 1 in disk.

• Allocate block[i].

• Set bit[i] = 1 in memory.

32 A. Frank - P. Weisberg

Linked Free Space List on Disk

33 A. Frank - P. Weisberg

Directory Implementation

• Linear list of file names with pointer to the data

blocks:

– simple to program

– time-consuming to execute

• Hash Table – linear list with hash data

structure:

– decreases directory search time

– collisions – situations where two file names hash to

the same location

– fixed size

34 A. Frank - P. Weisberg

Efficiency and Performance

• Efficiency dependent on:

– Disk allocation and directory algorithms.

– Types of data kept in file’s directory entry.

• Performance:

– Disk cache: separate section of main memory for

frequently used blocks.

– Free-behind and read-ahead: techniques to optimize

sequential access.

– Improve PC performance by dedicating section of

memory as virtual disk or RAM disk.

35 A. Frank - P. Weisberg

Page Cache

• A page cache caches

pages rather than disk

blocks using virtual

memory techniques.

• Memory-mapped I/O

uses a page cache.

• Routine I/O through

the file system uses the

buffer (disk) cache.

36 A. Frank - P. Weisberg

Unified Buffer Cache

• A unified buffer cache

uses the same page

cache to cache both

memory-mapped pages

and ordinary file system

I/O.

37 A. Frank - P. Weisberg

Recovery

• Consistency checking – compares data in

directory structure with data blocks on disk,

and tries to fix inconsistencies.

• Use system programs to back up data from disk

to another storage device (floppy disk, magnetic

tape).

• Recover lost file or disk by restoring data from

backup.

38

Storage Backup

A. Frank - P. Weisberg

