
CCJ-123-DASAR
PENGEMBANGAN PERANGKAT

LUNAK (PERTEMUAN KE 2)

Dosen Pengampu :

5165-Kundang K Juman
Prodi Teknik Informatika Fakultas Ilmu Komputer

2

R&D SDM 1

Software Project Management

Requirements Analysis

2010

Theo Schouten

3

Content

•What is requirements analysis?

•Why is it so difficult?

•Stages

•Methods and tools

Book:

ch 7 Requirements engineering + ch 8 analysis modeling

(version 7: ch 5, 6 and 7)

4

Requirements Analysis: definitions

‘The process of establishing the services the system should

provide and the constraints under which it must operate’

Roger S. Pressman Software Engineering – A practitioner’s Approach

European Adaptation, fifth edition

‘the appropriate mechanism for understanding what the

customer wants, analyzing need, assessing feasibility,

negotiating a reasonable solution, specifying the solution

unambiguously, validating the specification, and managing

the requirements as they are transformed into an operational

system’

Thayer, R.H. and M. Dorfman, Software requirements engineering

5

Embodied knowledge

•“Because software is embodied knowledge, and because that

knowledge is initially dispersed, tacit, latent and incomplete in large

measure, software development is a social learning process.

•The process is a dialogue in which the knowledge that must become

the software is brought together and embodied in the software.

•The process provides interaction between users and designers and

evolving tools (technology).

•It is an iterative process in which the evolving tool itself serves as

the medium for communication, with each new round of dialogue

eliciting more useful knowledge from the people involved.”

Howard Baetjer, jr.

6

Why so difficult?

– Different “worlds”

– using vs designing something

– knowing what should be done vs knowing to let a computer

do that

– Users/stakeholders are not an uniform group

– conflict between cost and usability / performance / features

– conflicting demands from different departments

– Getting the good (ideal) system vs possibility building it good

Interaction….match

Users/stakeholders

Software designer

7

other factors

– Expectations, the final solution is difficult to imagine by the users

– Scope of the system

– need well defined boundaries

– Current vs future system

– old, rusted demands and wishes

– resistance to change

– Aiming at a moving target

– ‘Wicked problems’ – more than one good solution

– functional needs versus technical solutions

– Completeness (functional and technical) hard to get

– Difference between ‘nice-to-have’ en critical functionality

Process of negotiation between users and designers

8

Stages in RE

• Inception

• Elicitation

• Elaboration

• Negotiation

• Specification

• Validation

• Management

9

Inception

• ask a set of questions that establish …

– basic understanding of the problem

– the people who want a solution

– the nature of the solution that is desired

– the effectiveness of preliminary communication

and collaboration between the customer and the

developer

10

Elicitation

• elicit requirements from all stakeholders

– address problems of scope

– address problems of understanding

• customers are not sure about what is needed,

skip “obvious” issues, have difficulty

communicating with the software engineer,

have poor grasp of problem domain

– address problems of volatility (changing

requirements)

11

Elaboration and negotiation

• Elaboration: create an analysis model that identifies data,

function, features, constraints and behavioral requirements

• Negotiation: agree on a deliverable system that is realistic for

developers and customers

– rank requirements by priority (conflicts arise here …)

– identify and analyze risks assoc. with each requirement

– “guestimate” efforts needed to implement each requirement

– eliminate, combine and / or modify requirements to make

project realistic

12

Specification

• can be any one (or more) of the following:

– A written document

– A set of models

– A formal mathematical model

– A collection of user scenarios (use-cases)

– A prototype

13

Validation

• a review mechanism that looks for:

– errors in content or interpretation

– areas where clarification may be required

– missing information

– inconsistencies (a major problem when large

products or systems are engineered)

– conflicting or unrealistic (unachievable)

requirements

– tests for requirements

14

Management

• involves managing change:

– Feature traceability: how requirements relate to
observable system/product features

– Source traceability: identifies source of each
requirement

– Dependency traceability: how requirements are
related to each other

– Subsystem traceability: categorizes requirements
by the sub system (s) they govern

– Interface traceability: how requirements relate to
both external and internal system interfaces

15

Methods and tools

many of them available

• lists

– elicitation question list

– checklists for validation

• graphical diagrams, good for communication

• formal methods

– e.g. UML for elaboration and specification

16

Quality Function Deployment

A technique of translating customer needs into technical

system requirements:

• Normal requirements: reflect stated customer goals

and objectives

• Expected requirements: implicit to the product or

system; their absence will cause significant customer

dissatisfaction

• Exciting requirements: featured going beyond

customer expectations, causing customer euphoria (;-)

• concentrate on maximizing customer satisfaction

17

• Function deployment: determines the “value” (as

perceived by the customer) of each function required

of the system

• Information deployment: identifies data objects and

events, ties them to functions

• Task deployment: examines the behavior of the

system

• Value analysis: determines the relative priority of

requirements

18

Modeling approaches

19

• Scenario-based: user interaction with system

– Use-case: descriptions of the interaction

• Data-based: data objects in system

– ER (entity-relation) Diagrams

– Class-based: data+methods

• OO, Class diagrams, implied by scenarios

• Behavioral-based: how external events change system

– State, sequence diagram

• Flow-based: information transforms

– Data flow, control flow diagrams

20

Modeling for WebApps

Content Analysis. the content is identified, including

text, graphics and images, video, and audio data.

Interaction Analysis. The manner in which the user

interacts with the WebApp is described in detail.

Functional Analysis. The usage scenarios (use-cases)

created as part of interaction analysis define the

operations that will be applied to WebApp content and

imply other processing functions.

Configuration Analysis. The environment and

infrastructure in which the WebApp resides are

described in detail. Server-client side.

21

In which phase of the whole process?

Phase 1
Develop
blueprint

Phase 2
Design

Information-
system

Phase 3
Realization

Phase 4
ImplementationP

h
a
s
e

S
te

p
s

D
o
c
u
m

e
n
t

Needs

for system

Definition

Functional

Design

Functional

Specification

Feasibilty-

study

Feasibility

Technical

Design

Technical

Specification

Requirements

Analysis

22

Attention points

•Focus on external performance of the system towards the users

•Limitations in the environment should be well described

(technical, number of users and usage, use etc.)

•Ease of adaptation

•References for maintaining the system

•Vision on the life cycle of the system

•How to deal with unexpected events (fault-proof)

