

Smart, Creative and Entrepreneurial

CCJ-123-DASAR PENGEMBANGAN PERANGKAT LUNAK (PERTEMUAN-6)

Dosen Pengampu : 5165-Kundang K Juman, Prodi Teknik Informatika Fakultas Ilmu Komputer

www.esaunggul.ac.id

Introduction to Project Management

Malcolm Kear

EFTS/EODI Training Programme

Wednesday, 10 June 2009

Course Objectives

To provide participants with:

- An awareness of the importance of applying good practice Project Management in projects of any size.
- An understanding of essential elements, including the Leadership Role of the Project Manager, Project Planning, Risk Management and Stakeholder
 Engagement.
 - An understanding of the principle elements of design control to be applied within projects at Culham.

Culham Challenges

"What are the particular technical challenges facing projects at Culham?"

Research environment

- requirements may be hard to define and may change
- producing one or a few items rather than production line
- Uncertainties of leading edge $R\&D \Rightarrow$
 - solutions may have to be developed, including possibly new technologies
 - 'first of a kind' so planning and estimating is difficult

 Need to balance the desire to get maximum performance versus achieving acceptable reliability/availability

Culham Challenges

"What are the particular management challenges facing projects at Culham?"

- Requirements hard to define and may evolve
- Risk Management (all aspects) crucial but difficult
- Cross functional team composition
- Competing pressures on resources, e.g. design office
 Working with scientific organisations not used to project and QA disciplines ⇒ planning may be poor
- Collaborative agreements rather than contracts
- Political EC funding requirements
 - Growing funding pressures due to ITER

What is a Project?

"Unique process consisting of a set of coordinated and controlled activities with start and finish dates, undertaken to achieve an objective conforming to specific requirements, including constraints of time, cost, quality and resources"

A Project is a planned set of activities
A Project has a scope
A Project has time, cost, quality and resource constraints

What is Project Management?

The art of organising, leading, reporting and completing a project through people

What is Project Management?

A project is a planned undertaking

- A project manager is a person who causes things to happen
- Therefore, project management is causing a planned undertaking to happen.

Write down three attributes of a good Project Manager

Project Manager Role

- A Good Project Manager
 - Takes ownership of the whole project
 - Is proactive not reactive
 - Adequately plans the project
 - Is Authoritative (NOT Authoritarian)
 - Is Decisive
 - Is a Good Communicator
 - Manages by data and facts not uniformed optimism
 - Leads by example
 - Has sound Judgement
 - Is a Motivator
 - Is Diplomatic
 - Can Delegate

Stakeholder Engagement

Stakeholder

"A person or group of people who have a vested interest in the success of an organization and the environment in which the organization operates"

Write down three typical project stakeholders

Exercise 2 - Typical Stakeholders Sponsor Funding Body Customer Suppliers End User HSE/Environmental Agency Maintenance Team Neighbours/Community/Shareholders Fusion Community Interfaces

Stakeholder Engagement process

- Identify Stakeholders
 Assess needs
 Define actions
- Establish communication channels
 Gather feedback
 Monitor and review

The Project Process

Key Points in Project Set-up and Definition

- Create Project Management Plan (PMP)
- Be clear of scope and objectives
- Establish clear statement of what is to be done (WBS)
- Establish Risks to be Managed
- Establish Costs and Durations
 - Establish Resources Required

Project management Plan - PMP

- Master Document for Project
- Defines the following:-
 - ➡ Project Objectives, Scope, Deliverables
 - ➡ Stakeholders (Internal & External)
 - ➡ Work to be done (WBS)
 - ➡ Project Organisation and Resources (OBS)
 - ➡ Project Costings (CBS)
 - Project Schedule
 - Procurement/Contract Strategy
 - ➡ Risk Management
 - Quality management
 - Change Management

Project Planning

Project Planning

Adequate planning leads to the correct completion of work

Planning

Inadequate planning leads to frustration towards the end of the project & poor project performance

Project Start

Project End

Work Breakdown Structure (WBS)

- The Work Breakdown Structure is the foundation for effective project planning, costing and management.
- It is the most important aspect in setting-up a Project
- It is the foundation on which everything else builds

Work Breakdown Structure - Definition

"A Work Breakdown Structure (WBS) is a hierarchical (from general to specific) tree structure of deliverables and tasks that need to be performed to complete a project."

Example WBS - Top Level ILW Project

Example WBS - Top Level TSCL Project

Optical Systems 5.5.C.0.0.0.0.0 Thomson Scattering Core (LIDAR) 5.5.C.1.0.0.0.0

Project Planning – WBS (1)

- Lowest Level of WBS is the Work Package (WP)
- WP can be clearly defined allowing package to be costed, scheduled and resourced
 WP contains a list of Tasks to be Performed that form the basis for the Schedule
 WP allows assignment of responsibilities (Work Package Manger, WPM)

Project Planning – WBS (2)

- WBS allows hierarchical build-up of costs and schedule
- Cost and Schedule can be reported at any level of the WBS
- WBS facilitates strong management during project execution (Cost and Schedule control)
 - WBS can be used for many other things -Document Management, Risk Management etc.

Project Planning

A word about Scheduling -Schedules (task durations) can have a wide variation -There is no unique answer. Rather, there is a statistical variation depending on assumptions Need to understand the basis of scheduling (Most challenging; Most likely; Absolute certainty - bet your life on it!)

- bet your me on n!)

Most people are very optimistic/naive

Common schedule development

Example WBS for the ITER-Like Wall & TSCL Projects

TSCL WBS

Project Planning – Key Points

- Recognise that adequate project planning is essential
- Produce a sound WBS
 Use the framework provided by the Project Management Plan (PMP) template
 Involve the right people
 Allow enough time
 Be systematic

Project Risk Management

Project Risk – Definition (1)

"Project risk is an uncertain event or condition that, if it occurs, has a positive or negative effect on a project objective"

Project Risk – Definition (2)

"A combination of the probability of a defined threat or opportunity (Likelihood) and the magnitude of the consequences of the occurrence (Impact) defines a Risk Index"

Risk Impact

Threat \rightarrow Scope \rightarrow Poor Quality Product Threat \rightarrow Schedule \rightarrow Late Delivery Threat \rightarrow Cost \rightarrow Overspend

In addition there are health, safety and environmental threats that <u>must</u> be managed (CDM Regulations) **Risk Management Process**

Identify Risks
Assess likelihood and impact
Rank risks and prioritise
Define risk management approach & actions
Implement actions
Monitor & review

Example Risk Management for the ITER-Like Wall Project

MJ Kear

verPoint Presentat

Risk Management – Key Points

- Make the management of risk integral to the way the project is managed
- Ensure that cost and time contingencies are consistent with identified risks
- Focus on the "significant few" don't try to manage too many risks
- Be vigilant and proactive

Project Monitoring and Control

Write down three typical project control/monitoring activities

Project Monitoring Typical Monitoring Activities -regular reviews of progress against schedule using WBS as basis (Plan against Baseline) -regular review of actual costs (O/P from SAP) against budgeted costs and Earned Value at **WBS** level regular review of resource loading regular progress meetings with project team -regular meetings with contractors

- production of periodic progress reports
 risk reviews
- -inspections/ audits

Project Control

Typical Control Activities assign responsibilities at Work Package level -staged authorisation of work to be done -staged release of budgets (staged release of WBS(e) numbers) ensure PM has a 'Management Reserve' under his control -seek corrective action reports when WPs go 'off

track' (overrunning or overspending)
– release Management Reserve carefully

Project Monitoring and Control Summary

Monitor against the plan – status regularly
Take a factual approach to decisions
Identify management action early
Check that defined controls are being applied – correct if necessary
Apply change control

Introduction to Design Management

Design Management

 Design takes place as part of a project
 Design Management is part of Project Management

Design Management considerations must be included in the PMP

Write down three Design Management Activities

Exercise 4 - Design Management Activities
Sub-divide Design Stages (CD, SD & DD)
Sub-divide Tasks (WBS)

- Define Constraints and Interfaces (WPD Summary Sheet)
- Formally Initiate the Design (TCD-R/PERF)
- Ensure Design conforms to H&SE and CDM Requirements
- Hold Design Reviews (Peer review)
- Formally Approve Design (TCD-I/MMAC)

Conceptual Design
Scheme Design
Detailed Design

Conceptual Design Phase TCD-R Decide Local or TCS route Develop Conceptual Design Define Constraints & Interfaces Carry out Conceptual Design Review Initiate Safety Case Modification if required Obtain Approval to Proceed to next stage

Scheme and Detailed Design

- Basic considerations and process similar to concept
- Need to ensure that safety & environmental issues receive proper consideration as design develops (CDM Regulations)

Exercise 5

List who should be invited to a design review
Write down three issues that should be considered at a design review

Exercise 5 - Design Reviews, Attendance

Project Leader or nominee (Chairman)RO (Work Package Manager)

- Customer
- End User
- Safety and Quality Reps
- All other Relevant Interfaces/Stakeholders
 Other Experts in the area being reviewed

Exercise 5 - Design Reviews, Issues to Consider

Assumptions and Constraints Technical Solutions - Does it meet the Spec? Safety, Environment and CDM issues Can it be Manufactured/Maintained? Actions from previous DRs Issues to be resolved (including Timescales)

Safety & Environment

Need to ensure that safety & environmental issues receive proper consideration as design develops

- -Involve the right people from the start
- Systematically identify issues Hazards/Risks, Environmental Aspects & Impacts
 - -Carry out rigorous reviews at each design stage
- -Control Design Changes
- MUST take note of CDM Regulations

CDM Regulations

CDM - Construction (Design & Management) Regulations recently updated Now must have someone in EACH Project **Responsible for CDM** Currently information is on the Conceptual, Scheme & Detailed Design steps on the Process Maps More information will be developed over the coming months

Design Change control

 Needs to be a formal and defined procedure
 New procedure in place CD/P/J008 for JET Facilities

Confirm Completion

- Ensure design records are complete and accurate
- Ensure any outstanding actions or issues are addressed
- Ensure Maintenance Records are produced
 Ensure User Manuals are produced
 Hold a formal Post Project review