
CMC 101 TOPIK DALAM PEMROGRAMAN
PERTEMUAN 1

PROGRAM STUDI MAGISTER ILMU KOMPUTER
FAKULTAS ILMU KOMPUTER

TOPIK	DALAM	PEMROGRAMAN	

Pertemuan	1	

PERKENALAN	

•  Nama	:	Dr.	Gerry	Firmansyah	S.T	M.Kom	
•  Kontak	:	gerryfirmansyahs2@gmail.com	
•  Mobile	:	0811-8111-610	(WA,SMS,LINE,KAKAO)	

•  S3	-	Computer	Science	,	Universitas	Indonesia	
•  S2	-	Magister	TI,	Universitas	Indonesia	
•  S1	-	InformaWka,	ITB	
•  D3	-	Teknik	Komputer,	Politeknik	ITB	

Topik	Research	

•  E-Government	:	GEAF	
•  E-Governance	:	IT	Audit,	COBIT,	IT	Risk	
•  Smart	Mobility	:	VR,	Smart	device	
•  Geographical	InformaWon	System	

Cakupan	Perkuliahan	
1.  berpikir	komputasional	
2.  paradigma	pemrograman		
3.  paradigma	fungsional	(bahasa	Haskell)	
4.  paradigma	deklaraWf	(bahasa	Prolog)	
5.  paradigma	berorientasi	objek	(bahasa	C++)	
6.  paradigma	berbasis	event/	reac*ve	(java)	
7.  Problem	solver	dgn	paradigma	yang	sesuai		
8.  paradigma	prosedural	(bahasa	Pascal)	
9.  Problem	solver	dgn	struktur	data	yang	sesuai	
10.  analisis	terhadap	efisiensi	suatu	algoritma		
11.  Notasi	O	
12.  Teknik	Greedy	dan	Dynamic	Programming		

Buku	Acuan	
•  ComputaWonal	Thinking	for	the	Modern	Problem	Solver	(Chapman	&	Hall/

CRC	Textbooks	in	CompuWng)	1st	EdiWon,	David	D.	Riley		&Kenny	A.	Hunt,	
Chapman	and	Hall/CRC;	1	ediWon	(March	27,	2014)	

•  Programming	Languages:	Principles	and	Paradigms	(Undergraduate	Topics	
in	Computer	Science),	Maurizio	Gabbrielli,	Simone	MarWni,	Springer;	2010	
ediWon	(April	15,	2010)		

•  Learn	You	a	Haskell	for	Great	Good!:	A	Beginner's	Guide	1st	EdiWon,	
MiranLipovaca,		No	Starch	Press;	1	ediWon	(April	21,	2011)	

•  Prolog	Programming	Success	in	a	Day:	Beginners	Guide	to	Fast,	Easy	and	
Efficient	Learning	of	Prolog	Programming,	Sam	Key,	CreateSpace	
Independent	Publishing	Plajorm	(August	12,	2015)	

•  The	C++	Programming	Language	3rd	EdiWon,	Stroustrup,	Addison-Wesley	
(1997)	

•  Learning	ReacWve	Programming	with	Java	8,	NickolayTsveWnov,	Packt	
Publishing	(June	24,	2015)	

•  Pascal:	An	IntroducWon	to	the	Art	and	Science	of	Programming	(4th	
EdiWon),	Walter	Savitch,	Addison	Wesley;	4	ediWon	(December	31,	1994)	

•  IntroducWon	to	the	Design	and	Analysis	of	Algorithms	(2nd	EdiWon),	
AnanyLeviWn,	Addison	Wesley;	2	ediWon	(February	24,	2006)	

Perkenalan	Peserta	

•  Nama	
•  Program	sarjana		
– Dimana	
–  Jurusan	apa	
– Mengambil	tugas	akhir	apa		

Mekanisme	Perkuliahan	
•  Penilaian	

•  35%	Ujian	Tengah	Semester	
•  20%	Tugas	kelompok	
•  35%	Ujian	akhir	semester	
•  10%	Absen	

BERPIKIR	KOMPUTASIONAL	

10	

Computa(onal	Thinking	in	CS		
(Jeanne5e	Wing)	

•  Conceptualizing,	not	programming	
•  Fundamental,	not	rote	skill	
•  A	way	that	humans,	not	computers	think	
•  Complements	and	combines	mathema(cal	and	engineering	thinking	
•  Ideas,	not	ar(facts	
•  For	everyone,	everywhere	

•  Thinking	Recursively	
•  Thinking	Abstractly	
•  Thinking	Ahead		

•  Thinking	Algorithmically	
•  Thinking	Logically	
•  Thinking	Concurrently	
	

Sumber	:	BATEC	

11	

Computa(onal	Thinking	in	IT	
Criteria	 DefiniFon	 Measures	

Logical	Thinking	 CreaWvely	develop,	select	and	test	
relevant	hypotheses	

Asks	probing	quesWons	to	uncover	details	of	the	problem	
Clearly	defines	the	problem	
Defines	clear	success	criteria	for	the	project	including	measurable	objecWves	

Strategizing	 Ability	to	anWcipate	and	evaluate	
potenWal	outcomes	

AnWcipates	and	evaluates	the	effects	of	various	design	opWons	
Makes	design	decisions	based	on	raWonal	criteria	

Abstract	Thinking	 Ability	to	find	appropriate	level	of	
detail	to	define	and	solve	a	problem	

Decomposes	a	problem	into	component	parts	
Understands	the	relaWonships	between	components	

Procedural	Thinking	 Ability	to	select	and	execute	
appropriate	steps	to	solve	a	problem	

IdenWfies	the	steps	required	to	solve	a	problem	
IdenWfies	the	sequence	of	steps	including	possible	decisions	and	branching	
IdenWfies	normal	and	excepWonal	behavior	of	a	soluWon				

Op*mizing	
Ability	to	analyze	processes	for	
opWmal	efficiency	and	use	of	
resources	

Understands	available	resources	
Develops	a	soluWon	that	uses	only	available	resources	
Measures	and	adapts	the	soluWon	to	opWmize	resource	uWlizaWon	

Itera*ve	Refinement	 Process	refinement	with	the	goal	of	
improving	quality	or	precision.	

Measures	and	evaluates	soluWons	against	the	success	criteria	
Adjusts	the	design	and	implementaWon	as	needed	

Sumber	:	BATEC	

ComputaWonal	thinking		

How	do	we	think	about	
problems	so	that	computers	
can	help?		
	
Computers	are	incredible	devices:	they	extend	
what	we	can	do	with	our	brains.	With	them,	we	can	
do	things	faster,	keep	track	of	vast	amounts	of	
informaWon	and	share	our	ideas	with	other	people.		
	
	

1	 8	

What	is	computaWonal	thinking?		

Geqng	computers	to	help	us	to	solve	problems	
is	a	two-step	process:		
1.	First,	we	think	about	the	steps	needed	to	
solve	a	problem.		
2.	Then,	we	use	our	technical	skills	to	get	the	
computer	working	on	the	problem.		
	
•  Take	something	as	simple	as	using	a	calculator	to	solve	a	word	problem	in	maths.	First,	

you	have	to	understand	and	interpret	the	problem	before	the	calculator	can	help	out	
with	the	arithmeWc	bit.		

•  Similarly,	if	you’re	going	to	make	an	animaWon,	you	need	to	start	by	planning	the	story	
and	how	you’ll	shoot	it	before	you	can	use	computer	hardware	and	sosware	to	help	
you	get	the	work	done.		

•  ComputaWonal	thinking	describes	the	
processes	and	approaches	we	draw	on	when	
thinking	about	problems	or	systems	in	such	a	
way	that	a	computer	can	help	us	with	these.		

•  ComputaWonal	thinking	is	not	thinking	about	
computers	or	like	computers.	Computers	
don’t	think	for	themselves.	Not	yet,	at	least!		

•  ComputaWonal	thinking	is	about	looking	at	a	
problem	in	a	way	that	a	computer	can	help	us	
to	solve	it.		

When	we	do	computaWonal	thinking,	we	use	the		
following	processes	to	tackle	a	problem:		
•  Logical	reasoning:	predicWng	and	analysing	
•  Algorithms:	making	steps	and	rules		
•  DecomposiWon:	breaking	down	into	parts	
•  AbstracWon:	removing	unnecessary	detail		
•  Paterns	and	generalisaWon:	spoqng	and	using	
similariWes		

•  EvaluaWon:	making	judgements		

Logical	reasoning		

Can	you	explain	why	something	happens?		
	

•  If	you	set	up	two	computers	in	the	same	way,	give	them	
the	same	instrucWons	(the	program)	and	the	same	input,	
you	can	prety	much	guarantee	the	same	output.		

•  Computers	don’t	make	things	up	as	they	go	along	or	
work	differently	depending	on	how	they	happen	to	be	
feeling	at	the	Wme.	This	means	that	they	
are	predictable.	Because	of	this	we	can	use	logical	
reasoning	to	work	out	exactly	what	a	program	or	
computer	system	will	do.		

	

How	is	logical	reasoning	used	in	
compuWng?		

•  Logic	is	fundamental	to	how	computers	work:	
deep	inside	the	computer’s	central	processing	
unit	(CPU),	every	operaWon	the	computer	
performs	is	reduced	to	logical	operaWons	
carried	out	using	electrical	signals.		

•  It’s	because	everything	a	computer	does	is	
controlled	by	logic	that	we	can	use	logic	to	
reason	about	program	behaviour.		

	

Algorithms		

What’s	the	best	way	to	solve	a	problem?		
	
•  An	algorithm	is	a	sequence	of	instrucWons	or	a	set	of	rules	to	

get	something	done.		
•  You	probably	know	the	fastest	route	from	school	to	home,	for	

example,	turn	les,	drive	for	five	miles,	turn	right.	You	can	
think	of	this	as	an	‘algorithm’	
–	as	a	sequence	of	instrucWons	to	get	you	to	your	chosen	
desWnaWon.	There	are	plenty	of	algorithms	(i.e.	routes)	that	
will	accomplish	the	same	goal;	in	this	case,	there	are	even	
algorithms	(such	as	in	your	satnav)	for	working	out	the	
shortest	or	fastest	route		

	

How	are	algorithms	used	in	the	real	
world?		

•  Search	engines	such	as	Bing	or	Google	use	algorithms	
to	put	a	set	of	search	results	into	order,	so	that	more	
osen	than	not,	the	result	we’re	looking	for	is	at	the	top	
of	the	front	page.		

•  Your	Facebook	news	feed	is	derived	from	your	friends’	
status	updates	and	other	acWvity,	but	it	only	shows	
that	acWvity	which	the	algorithm	(EdgeRank)	thinks	
you’ll	be	most	interested	in	seeing.	The	
recommendaWons	you	get	from	Amazon,	Nejlix	and	
eBay	are	algorithmically	generated,	based	in	part	on	
what	other	people	are	interested	in.		

DecomposiWon		
How	do	I	solve	a	problem	by	breaking	it	into	smaller	
parts?		
	
•  The	process	of	breaking	down	a	problem	into	smaller	

manageable	parts	is	known	as	decomposiWon.	
DecomposiWon	helps	us	solve	complex	problems	and	
manage	large	projects.		

•  This	approach	has	many	advantages.	It	makes	the	
process	a	manageable	and	achievable	one	–	large	
problems	are	daunWng,	but	a	set	of	smaller,	related	tasks	
are	much	easier	to	take	on.	It	also	means	that	the	task	
can	be	tackled	by	a	team	working	together,	each	bringing	
their	own	insights,	experience	and	skills	to	the	task.		

	

How	is	decomposiWon	used	in	the	real	
world?		

•  Decomposing	problems	into	their	smaller	parts	is	
not	unique	to	compuWng:	it’s	prety	standard	in	
engineering,	design	and	project	management.		

•  Sosware	development	is	a	complex	process,	and	
so	being	able	to	break	down	a	large	project	into	
its	component	parts	is	essenWal	–	think	of	all	the	
different	elements	that	need	to	be	combined	to	
produce	a	program,	like	PowerPoint.		

AbstracWon		
How	do	you	manage	complexity?		

•  The	abstrac*on	process	–	deciding	what	details	
we	need	to	highlight	and	what	details	we	can	
ignore	–	underlies	computa*onal	thinking.4		

•  AbstracWon	is	about	simplifying	things;	
idenWfying	what	is	important	without	worrying	
too	much	about	the	detail.	AbstracWon	allows	us	
to	manage	complexity.		

	

•  We	use	abstracWons	to	manage	the	
complexity	of	
life	in	schools.	For	example,	the	school	
Wmetable	is	
an	abstracWon	of	what	happens	in	a	typical	
week:	it	captures	key	informaWon	such	as	who	
is	taught	what	subject	where	and	by	whom,	
but	leaves	to	one	side	further	layers	of	
complexity,	such	as	the	learning	objecWves	
and	acWviWes	planned	in	any	individual	lesson.		

Paterns	and	generalisaWon		
How	can	you	make	things	easier	for	yourself?		
	
In	compuWng,	the	method	of	looking	for	a	general	approach	to	a	class	
of	problems	is	called	generalisaWon.	By	idenWfying	paterns	we	can	
make	predicWons,	create	rules	and	solve	more	general	problems.	For	
example,	
in	learning	about	area,	pupils	could	find	the	area	of	a	parWcular	
rectangle	by	counWng	the	cenWmetre	squares	on	the	grid	on	which	it’s	
drawn.	But	a	beter	soluWon	would	be	to	mulWply	the	length	by	the	
width:	not	only	
is	this	quicker,	it’s	also	a	method	that	will	work	on	all	rectangles,	
including	really	small	ones	and	really	large	ones.	Although	it	takes	a	
while	for	pupils	to	understand	this	formula,	once	they	do	it’s	so	much	
faster	than	counWng	squares.		
	

HOW	DOES	SOFTWARE	GET	WRITTEN?		
	

How	does	sosware	get	writen?		

•  As	well	as	the	above	processes,	there	are	also	
a	number	of	approaches	that	characterise	
computaWonal	thinking.	If	pupils	are	to	start	
thinking	computaWonally,	then	it’s	worth	
helping	them	to	develop	these	approaches	to	
their	work,	so	they	can	be	more	effecWve	in	
puqng	their	thoughts	into	acWon.		

Tinkering		

•  There	is	osen	a	willingness	to	experiment	and	
explore	in	computer	scienWsts’	work.	Some	
elements	of	learning	a	new	programming	
language	or	exploring	a	new	system	look	quite	
similar	to	the	sort	of	purposeful	play	that’s	
seen	as	such	an	effecWve	approach	to	learning	
in	the	best	nursery	and	recepWon	classrooms.		

CreaFng		

•  Programming	is	a	creaWve	process.	CreaWve	
work	involves	both	originality	and	making	
something	of	value:	typically	something	that	is	
useful	or	at	least	fit	for	the	purpose	intended.		

•  Encourage	pupils	to	approach	tasks	with	a	
creaWve	spirit,	and	look	for	programming	tasks	
that	allow	some	scope	for	creaWve	expression	
rather	than	merely	arriving	at	the	right	
answer.		

Debugging		
•  Because	of	its	complexity,	the	code	programmers	write	

osen	doesn’t	work	as	it’s	intended.		
•  Geqng	pupils	to	take	responsibility	for	thinking	through	

their	algorithms	and	code,	to	idenWfy	and	
fix	errors	is	an	important	part	of	learning	to	think,	and	
work,	like	a	programmer.	It’s	also	something	to	encourage	
across	the	curriculum:	get	pupils	to	check	through	their	
working	in	maths,	or	to	proofread	their	stories	in	English.	
Ask	pupils	to	debug	one	another’s	code	(or	indeed	
proofread	one	another’s	work),	looking	for	mistakes	and	
suggesWng	improvements.	There’s	evidence	that	learning	
from	mistakes	is	a	parWcularly	effecWve	approach,	and	the	
process	of	pupils	debugging	their	own	or	others’	code	is	
one	way	to	do	this.		

CollaboraFng		

Sosware	is	developed	by	teams	of	programmers	
and	others	working	together	on	a	shared	
project.	Look	for	ways	to	provide	pupils	with	this	
experience	in	compuWng	lessons	too.	
CollaboraWve	group	work	has	long	had	a	place	in	
primary	educaWon,	and	compuWng	should	be	no	
different.		
	

TERIMA	KASIH	

