
CMC 101 TOPIK DALAM PEMROGRAMAN
PERTEMUAN 4

PROGRAM STUDI MAGISTER ILMU KOMPUTER
FAKULTAS ILMU KOMPUTER

TOPIK	DALAM	PEMROGRAMAN	
PEMROGRAMAN	DEKLARATIF	

Pertemuan	4	

TUJUAN	PERKULIAHAN	
•  Mahasiswa	mampu	membuat	design	solusi	
persoalan	dengan	paradigma	deklaraFf	dan	mampu	
membuat	program	sederhana	dengan	bahasa	Prolog	

•  Abstraksi	dan	“dekomposisi”	dalam	konteks	
fungsional:	data	(type	bentukan),	fungsi	

•  Ekspresi	aritmaFka,	logika,	dan	kondisional	
•  Analisis	rekurens	
•  Konsep	list	sebagai	struktur	rekursif	
•  Operasi	dasar	list	dengan	elemen	tertentu:	integer,	
character,	type	bentukan		

SWI-Prolog

•  SWI-Prolog is a good, standard Prolog for
Windows and Linux

•  It's licensed under GPL, therefore free
•  Downloadable from: http://www.swi-

prolog.org/

Syllogisms
•  “Prolog” is all about programming in logic.
•  Aristotle described syllogisms 2300 years ago
•  Sample syllogism:
– Socrates is a man.
– All men are mortal.
– Therefore, Socrates is mortal.

•  This is logic. Can Prolog do it?

Forward and backward reasoning

•  A syllogism gives two premises, then asks,
"What can we conclude?"
– This is forward reasoning -- from premises to

conclusions
–  it's inefficient when you have lots of premises

•  Instead, you ask Prolog specific questions
– Prolog uses backward reasoning -- from (potential)

conclusions to facts

Syllogisms in Prolog

 Syllogism

Socrates is a man.

All men are mortal.

Is Socrates mortal?

man(socrates).

mortal(X) :- man(X).

?- mortal(socrates).

Prolog

Facts, rules, and queries

•  Fact: Socrates is a man.
•  man(socrates).
•  Rule: All men are mortal.
•  mortal(X) :- man(X).
•  Query: Is Socrates mortal?
•  mortal(socrates).
•  Queries have the same form as facts

Running Prolog I
•  Create your "database" (program) in any editor
•  Save it as text only, with a .pl extension
•  Here's the complete program:

man(socrates).
mortal(X) :- man(X).

Running Prolog II

•  Prolog is completely interactive. Begin by
– Double-clicking on your .pl file, or
– Double-clicking on the Prolog application and

consulting your file at the ?- prompt:
•  ?- consult('C:\\My Programs\\adv.pl').

•  Then, ask your question at the prompt:
– ?- mortal(socrates).

•  Prolog responds:
– Yes

Prolog is a theorem prover

•  Prolog's "Yes" means "I can prove it" --
Prolog's "No" means "I can't prove it"
–  ?- mortal(plato).

No
•  This is the closed world assumption: the Prolog

program knows everything it needs to know
•  Prolog supplies values for variables when it can
–  ?- mortal(X).

X = socrates

Syntax I: Structures

•  A structure consists of a name and zero or
more arguments.

•  Omit the parentheses if there are no arguments
•  Example structures:
– sunshine
– man(socrates)
– path(garden, south, sundial)

Syntax II: Base Clauses

•  A base clause is just a structure, terminated
with a period.

•  A base clause represents a simple fact.
•  Example base clauses:
– debug_on.
–  loves(john, mary).
–  loves(mary, bill).

Syntax III: Nonbase Clauses

•  A nonbase clause is a structure, a turnstile :-
(meaning “if”), and a list of structures.

•  Example nonbase clauses:
– mortal(X) :- man(X).
– mortal(X) :- woman(X).
– happy(X) :- healthy(X), wealthy(X), wise(X).

•  The comma between structures means “and”

Syntax IV: Predicates
•  A predicate is a collection of clauses with the

same functor (name) and arity (number of
arguments).

•  loves(john, mary).
 loves(mary, bill).
 loves(chuck, X) :- female(X), rich(X).

Syntax V: Programs

•  A program is a collection of predicates.
•  Predicates can be in any order.
•  Clauses within a predicate are used in the order

in which they occur.

Syntax VI: Variables and atoms

•  Variables begin with a capital letter:
 X, Socrates, _result

•  Atoms do not begin with a capital letter:
 x, socrates

•  Atoms containing special characters, or
beginning with a capital letter, must be
enclosed in single quotes:
–  'C:\\My Documents\\examples.pl'

Syntax VII: Strings are atoms

•  In a quoted atom, a single quote must be
doubled or backslashed:
–  'Can''t, or won\'t?'

•  Backslashes in file names must also be
doubled:
–  'C:\\My Documents\\examples.pl'

Common problems
•  Capitalization is meaningful!
•  No space is allowed between a functor and its

argument list:
 man(socrates), not man (socrates).

•  Double quotes indicate a list of ASCII character
values, not a string

•  Don’t forget the period! (But you can put it on
the next line.)

Backtracking

•  loves(chuck, X) :- female(X), rich(X).
•  female(jane).
•  female(mary).
•  rich(mary).
•  ---------- Suppose we ask: loves(chuck, X).
–  female(X) = female(jane), X = jane.
–  rich(jane) fails.
–  female(X) = female(mary), X = mary.
–  rich(mary) succeeds.

Backtracking and Beads
•  Each Prolog call is like a “bead” in a string of beads:

•  Each structure has four ports: call, exit, redo, fail
•  Exit ports connect to call ports;

fail ports connect to redo ports

call
fail

exit
redo

Calls as nested beads

loves(chuck, X) :- female(X), rich(X).

loves(chuck, X)

female(X) rich(X)
call
fail

exit
redo

Additional answers

•  female(jane).
female(mary).
female(susan).

•  ?- female(X).
•  X = jane ;
•  X = mary
•  Yes

female(jane)

female(mary)

female(susan)

female(X)

Readings

•  loves(chuck, X) :- female(X), rich(X).
•  Declarative reading: Chuck loves X if X is

female and rich.
•  Approximate procedural reading: To find an X

that Chuck loves, first find a female X, then
check that X is rich.

•  Declarative readings are almost always
preferred.

Monotonic logic

•  Standard logic is monotonic: once you prove
something is true, it is true forever

•  Logic isn't a good fit to reality
•  If the wallet is in the purse, and the purse in is

the car, we can conclude that the wallet is in
the car

•  But what if we take the purse out of the car?

Nonmonotonic logic

•  Prolog uses nonmonotonic logic
•  Facts and rules can be changed at any time
– such facts and rules are said to be dynamic

•  assert(...) adds a fact or rule
•  retract(...) removes a fact or rule
•  assert and retract are said to be extralogical

predicates

Examples of assert and retract
•  assert(man(plato)).
•  assert((loves(chuck,X) :- female(X), rich(X))).
•  retract(man(plato)).
•  retract((loves(chuck,X) :- female(X), rich(X))).

•  Notice that we use double parentheses for rules
–  this is to avoid a minor syntax problem
– assert(foo :- bar, baz).
– How many arguments did we give to assert?

Limitations of backtracking

•  In Prolog, backtracking over something
generally undoes it

•  Output can't be undone by backtracking
•  Neither can assert and retract be undone by

backtracking
•  Perform any necessary testing before you use

write, nl, assert, or retract

Modeling “real life”

•  Real life isn't monotonic; things change
•  Prolog is superb for modeling change
•  Games are often a model of real (or fantasy!)

life
•  Prolog is just about ideal for adventure games

Starting Prolog
•  [Macintosh:~] dave% prolog

% library(swi_hooks) compiled into pce_swi_hooks 0.00 sec, 3,928 bytes
Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 5.10.1)
Copyright (c) 1990-2010 University of Amsterdam, VU Amsterdam
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.

•  ?- consult('C:_Prolog\\dragon.pl').

•  % C:_Prolog\dragon.pl compiled 0.00 sec, 14,560 bytes
Yes

Instructions
•  ?- start.
•  Enter commands using standard Prolog syntax.

Available commands are:
start. -- to start the game.
n. s. e. w. -- to go in that direction.
take(Object). -- to pick up an object.
drop(Object). -- to put down an object.
use(Object). -- to use an object.
attack. -- to attack an enemy.
look. -- to look around you again.
instructions. -- to see this message again.
halt. -- to end the game and quit.

Starting out

•  You are in a meadow. To the north is the
dark mouth of a cave; to the south is a
small building. Your assignment, should
you decide to accept it, is to recover the
famed Bar-Abzad ruby and return it to
this meadow.

Yes

Going south

•  ?- s.
•  You are in a small building. The exit is to

the north. The room is devoid of
furniture, and the only feature seems to
be a small door to the east.

There is a flashlight here.

Yes

Taking things, locked doors

•  ?- take(flashlight).
•  OK.

Yes

•  ?- e.
•  The door appears to be locked.

You can't go that way.

Yes

Some time later...

•  ?- use(key).
•  The closet is no longer locked.

Yes

•  Later still...
•  ?- look.
•  You are in a big, dark cave. The air is fetid.

There is a chest here.

Essential facts

•  Where I am at present:
–  i_am_at(meadow).

•  Where other things are at:
– at(flashlight, building).

•  What I am holding:
– holding(key).

•  Which facts may be changed:
– :- dynamic i_am_at/1, at/2, holding/1.

Input and output
•  Input is unpleasant; we avoid it by giving

commands (as questions) directly to Prolog
– take(flashlight).

•  write(...) outputs its one argument
•  nl ends the line (writes a newline)
•  describe(closet) :-

 write('You are in an old storage closet.'),
 nl.

The map

cave_entrance cave

meadow

building closet

 N
 W E
 S

Implementing the map

•  path(cave, w, cave_entrance).
path(cave_entrance, e, cave).

•  path(meadow, s, building).
path(building, n, meadow).

•  Could have done this instead:
– path(cave, w, cave_entrance).

path(X, e, Y) :- path(Y, w, X).

listing

•  listing(predicate) is a good way to examine
the current state of the program

•  ?- listing(at).
– at(key, cave_entrance).

at(flashlight, building).
at(sword, closet).

Yes

North, south, east, west

•  The commands n, s, e, w all call go.
•  n :- go(n).

s :- go(s).

e :- go(e).

w :- go(w).

go

•  go(Direction) :-
 i_am_at(Here),
 path(Here, Direction, There),
 retract(i_am_at(Here)),
 assert(i_am_at(There)),
 look.

•  go(_) :-
 write('You can''t go that way.').

take

•  take(X) :-
 i_am_at(Place),
 at(X, Place),
 retract(at(X, Place)),
 assert(holding(X)),
 write('OK.'),
 nl.

You can't always take

take(A) :-
 holding(A),
 write('You\'re already holding it!'), nl.

take(A) :- (actually take something, as before).

take(A) :-
 write('I don\'t see it here.'), nl.

Making things fail

•  A predicate will fail if it doesn't succeed
•  You can explicitly use fail
•  fail works like this:

•  This often isn't strong enough; it doesn't force the
entire predicate to fail

fail
call
fail

cut

•  The "cut," written ! , is a commit point
–  It commits to the clause in which it occurs, and
– everything before it in that clause

•  Using cut says: Don't try any other clauses,
and don't backtrack past the cut

!
call exit

cut-fail

•  The cut-fail combination: !, fail means
really fail

•  It commits to this clause, then fails
•  This means no other clauses of this predicate

will be tried, so the predicate as a whole fails

A locked door

•  path(building, e, closet) :-
 locked(closet),
 write('The door appears to be locked.'),
nl,
 !, fail.
path(building, e, closet).

•  If the closet door isn't locked, the first clause
fails "normally," and the second clause is used

•  If the closet door is locked, the cut prevents the
second clause from ever being reached

Dropping objects

drop(A) :-
 holding(A),
 i_am_at(B),
 retract(holding(A)),
 assert(at(A, B)),
 write('OK.'), nl.
drop(A) :-
 write('You aren\'t holding it!'), nl.

What else is Prolog good for?

•  Prolog is primarily an AI (Artificial
Intelligence) language

•  It's second only to LISP in popularity
•  It's more popular in Britain than in the U.S.
•  Prolog is also a very enjoyable language in

which to program (subjective opinion,
obviously!)

Prolog vs. LISP

•  Unlike LISP, Prolog provides:
– built-in theorem proving
– built in Definite Clause Grammars, good for

parsing natural language
•  If you just want to use these tools, Prolog is

arguably better
•  If you want to build your own theorem prover

or parser, LISP is clearly better

The End

