Universitas

Esa Unggul . Smart, Creative and Entrepreneurial

CMC 101 TOPIK DALAM PEMROGRAMAN
PERTEMUAN 4
PROGRAM STUDI MAGISTER ILMU KOMPUTER

: l.ac.i
MR ceatlcetLale FAKULTAS ILMU KOMPUTER

TOPIK DALAM PEMROGRAMAN
PEMROGRAMAN DEKLARATIF

Pertemuan 4

(@Eécamﬁnggul Smart, Creative and Entrepreneurial

TUJUAN PERKULIAHAN

 Mahasiswa mampu membuat design solusi
persoalan dengan paradigma deklaratif dan mampu
membuat program sederhana dengan bahasa Prolog

* Abstraksi dan “dekomposisi” dalam konteks
fungsional: data (type bentukan), fungsi

* Ekspresi aritmatika, logika, dan kondisional
* Analisis rekurens
* Konsep list sebagai struktur rekursif

* Operasi dasar list dengan elemen tertentu: integer,
character, type bentukan

B : P—

I S—————————.

(OEHSE Unggul Smart, Creative and Entrepreneurial

SWI-Prolog

* SWI-Prolog 1s a good, standard Prolog for
Windows and Linux

* [t's licensed under GPL, therefore free

* Downloadable from: http://www.swi-
prolog.org/

(OE“S"a“ ﬁnggul Smart, Creative and Entrepreneurial

Syllogisms

« “Prolog” is all about programming in logic.
* Aristotle described syllogisms 2300 years ago
* Sample syllogism:

— Socrates 1s a man.

— All men are mortal.
— Therefore, Socrates 1s mortal.

* This 1s logic. Can Prolog do 1t?

I S—————————.

(aﬁégﬁnggul Smart, Creative and Entrepreneurial

Forward and backward reasoning

* A syllogism gives two premises, then asks,
"What can we conclude?"

— This 1s forward reasoning -- from premises to
conclusions

— 1t's mefficient when you have lots of premises

* Instead, you ask Prolog specific questions

— Prolog uses backward reasoning -- from (potential)
conclusions to facts

B | : —

I S—————————.

(OEHSE Unggul Smart, Creative and Entrepreneurial

Syllogisms 1n Prolog
Syllogism Prolog
Socrates is a man. man(socrates).

All men are mortal. mortal(X) :- man(X).

Is Socrates mortal? ?- mortal(socrates).

E— . BR—

I S—————————.

(@E“s"a“ 0nggul Smart, Creative and Entrepreneurial

Facts, rules, and queries

* Fact: Socrates 1s a man.

. man(socrates).

* Rule: All men are mortal.

. mortal(X) :- man(X).
* Query: Is Socrates mortal?
. mortal(socrates).

* Queries have the same form as facts

I S—————————.

(OEHSE Unggul Smart, Creative and Entrepreneurial

Running Prolog I

* Create your "database" (program) in any editor
 Save it as fext only, with a .pl extension

* Here's the complete program:

man(socrates).
mortal(X) :- man(X).

(@‘E"s"a‘ ﬁnggul Smart, Creative and Entrepreneurial

Running Prolog II

* Prolog 1s completely interactive. Begin by
— Double-clicking on your .pl file, or

— Double-clicking on the Prolog application and
consulting your file at the ?- prompt:
o 7- consult('C:\\My Programs\\adv.pl).

* Then, ask your question at the prompt:
— ?- mortal(socrates).

* Prolog responds:
— Yes

I S—————————.

(@‘E"s"a‘ ﬁnggul Smart, Creative and Entrepreneurial

Prolog is a theorem prover

* Prolog's "Yes" means "I can prove 1t" --
Prolog's "No" means "I can't prove 1t"

— ?7- mortal(plato).
No

* This 1s the closed world assumption: the Prolog
program knows everything it needs to know
* Prolog supplies values for variables when it can
— ?- mortal(X).
X = socrates

I S—————————.

(@E“s"a“ ﬁnggul Smart, Creative and Entrepreneurial

Syntax I. Structures

e A structure consists of a name and zero or
more arguments.

* Omit the parentheses if there are no arguments

* Example structures:
— sunshine
— man(socrates)
— path(garden, south, sundial)

I S—————————.

(OEHSE Unggul Smart, Creative and Entrepreneurial

Syntax II: Base Clauses

* A base clause 1s just a structure, terminated
with a period.

* A base clause represents a simple fact.

* Example base clauses:
— debug_on.
— loves(john, mary).
— loves(mary, bill).

E— . BR—

I S—————————.

(aﬁégﬁnggul Smart, Creative and Entrepreneurial

Syntax III: Nonbase Clauses

* A nonbase clause 1s a structure, a turnstile :-
(meaning "if), and a list of structures.

* Example nonbase clauses:

— mortal(X) :- man(X).

— mortal(X) :- woman(X).

— happy(X) :- healthy(X), wealthy(X), wise(X).
e The comma between structures means “and’

B | : —

I S—————————.

(@E“s"a“ ﬁnggul Smart, Creative and Entrepreneurial

Syntax IV: Predicates

* A predicate 1s a collection of clauses with the
same functor (name) and arity (number of
arguments).

. loves(john, mary).
loves(mary, bill).
loves(chuck, X) :- female(X), rich(X).

. ;

(OE”S'; Unggul Smart, Creative and Entrepreneurial

Syntax V: Programs

* A program 1s a collection of predicates.
* Predicates can be 1n any order.

* Clauses within a predicate are used 1n the order
in which they occur.

(aﬁégﬁnggul Smart, Creative and Entrepreneurial

Syntax VI: Variables and atoms

* Variables begin with a capital letter:
X, Socrates, _result

» Atoms do not begin with a capital letter:
X, socrates

* Atoms containing special characters, or
beginning with a capital letter, must be
enclosed 1n single quotes:

—'C:\\My Documents\\examples.pl

B | : —

I S—————————.

(@E“s"a“ 0nggul Smart, Creative and Entrepreneurial

R — ——

Syntax VII: Strings are atoms

* In a quoted atom, a single quote must be
doubled or backslashed:

—'Can’t, or won\'t?'

 Backslashes in file names must also be
doubled:

—'C:\\My Documents\\examples.pl

I S—————————.

(aﬁégﬁnggul Smart, Creative and Entrepreneurial

Common problems

 Capitalization 1s meaningful!

* No space 1s allowed between a functor and 1ts
argument list:
man(socrates), not man (socrates).

* Double quotes indicate a list of ASCII character
values, not a string

« Don’ t forget the period! (But you can put it on
the next line.)

B | : —

I S—————————.

(@‘E"s"a‘ ﬁnggul Smart, Creative and Entrepreneurial

Backtracking

loves(chuck, X) :- female(X), rich(X).
female(jane).

female(mary).

rich(mary).

B Suppose we ask: loves(chuck, X).
— female(X) = female(jane), X = jane.

— rich(jane) fails.

— female(X) = female(mary), X = mary.

— rich(mary) succeeds.

I S—————————.

(OE”S'; Unggul Smart, Creative and Entrepreneurial

———“

Backtracking and Beads

« Each Prolog call is like a “bead” in a string of beads:

call —> —> exit
fail <—— <——redo

 Each structure has four ports: call, exit, redo, fail

 EXit ports connect to call ports;
fail ports connect to redo ports

‘.ﬁ__ I —

I S—————————.

(OE's'ra”' Unggul Smart, Creative and Entrepreneurial

I

Calls as nested beads

loves(chuck, X) :- female(X), rich(X).

loves(chuck, X)

call —>1— E— R ~> exit
% redo

female(X) || rich(X)

(OE“s"a" 0nggul Smart, Creative and Entrepreneurial

w———*

Additional answers

« female(jane).

female(mary). female(X)
female :
(susan) =) female(jane) —
 ?- female(X).
* X =Jane; = female(mary) <::>
« X =mary
—
* Yes — female(susan) [—

El—— ! " BRI

I S—————————.

(Oﬁégﬁnggul Smart, Creative and Entrepreneurial

Readings

 loves(chuck, X) :- female(X), rich(X).
* Declarative reading: Chuck loves X 1f X 1s
female and rich.

* Approximate procedural reading: To find an X
that Chuck loves, first find a female X, then

check that X 1s rich.

* Declarative readings are almost always
preferred.

B | : —

I S—————————.

(@‘E"s"a‘ ﬁnggul Smart, Creative and Entrepreneurial

Monotonic logic

* Standard logic 1s monotonic: once you prove
something is true, 1t 1s true forever

* Logic isn't a good fit to reality

* If the wallet 1s 1n the purse, and the purse 1n 1s
the car, we can conclude that the wallet 1s 1n

the car
* But what 1f we take the purse out of the car?

I S—————————.

(@E“s"a“ ﬁnggul Smart, Creative and Entrepreneurial

Nonmonotonic logic

* Prolog uses nonmonotonic logic

* Facts and rules can be changed at any time

— such facts and rules are said to be dynamic
* assert(...) adds a fact or rule
* retract(...) removes a fact or rule

* assert and retract are said to be extralogical
predicates

I S—————————.

(aﬁégﬁnggul Smart, Creative and Entrepreneurial

——

Examples of assert and retract

« assert(man(plato)).

» assert((loves(chuck,X) :- female(X), rich(X))).
« retract(man(plato)).

« retract((loves(chuck,X) :- female(X), rich(X))).

* Notice that we use double parentheses for rules
— this 1s to avoid a minor syntax problem
— assert(foo :- bar, baz).

— How many arguments did we give to assert?

B | : —

I S—————————.

(@‘E"s"a‘ ﬁnggul Smart, Creative and Entrepreneurial

Limitations of backtracking

* In Prolog, backtracking over something
generally undoes it

* Qutput can't be undone by backtracking

* Neither can assert and retract be undone by
backtracking

* Perform any necessary testing before you use
write, nl, assert, or retract

I S—————————.

(@E“s"a“ ﬁnggul Smart, Creative and Entrepreneurial

Modeling “real life”

* Real life 1sn't monotonic; things change
* Prolog 1s superb for modeling change

* Games are often a model of real (or fantasy!)
life

* Prolog is just about 1deal for adventure games

(OEHSE Unggul Smart, Creative and Entrepreneurial

Starting Prolog

» [Macintosh:~] dave% prolog
% library(swi_hooks) compiled into pce_swi_hooks 0.00 sec, 3,928 bytes

Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 5.10.1)
Copyright (c) 1990-2010 University of Amsterdam, VU Amsterdam
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.

Please visit http://www.swi-prolog.org for details.

« ?- consult('C:_Prolog\\dragon.pl).

« % C:_Prolog\dragon.pl compiled 0.00 sec, 14,560 bytes
Yes

E— . BR—

I S—————————.

(aﬁégﬁnggul Smart, Creative and Entrepreneurial

Instructions

o ?- start.

* Enter commands using standard Prolog syntax.
Available commands are:

start. -- to start the game.

n. s. e. W. -- to go in that direction.
take(Object). -- to pick up an object.
drop(Object). -- to put down an object.
use(Object). -- to use an object.

attack. -- to attack an enemy.

look. -- to look around you again.
instructions. -- to see this message again.
halt. -- to end the game and quit.

e

(aﬁégﬁnggul Smart, Creative and Entrepreneurial

Starting out

* You are in a meadow. To the north is the
dark mouth of a cave; to the south is a
small building. Your assignment, should
you decide to accept it, is to recover the
famed Bar-Abzad ruby and return it to
this meadow.

Yes

B | : —

I S—————————.

(@‘E"s"a‘ ﬁnggul Smart, Creative and Entrepreneurial

Going south

¢ 7-5.

* You are in a small building. The exit is to
the north. The room is devoid of
furniture, and the only feature seems to
be a small door to the east.

There is a flashlight here.

Yes

I S—————————.

(OE"S‘; Unggul Smart, Creative and Entrepreneurial

———“

Taking things, locked doors

 ?- take(flashlight).
« OK.

Yes

¢ ?- e,

* The door appears to be locked.
You can't go that way.

Yes

‘.ﬁ__ I —

I S—————————.

(OE”S'; Unggul Smart, Creative and Entrepreneurial

Some time later...

« ?- use(key).
* The closet is no longer locked.

Yes
. Later still...
« 7- look.
* You are in a big, dark cave. The air is fetid.

There is a chest here.

‘.ﬁ__ I —

I S—————————.

(@E“s"a“ 0nggul Smart, Creative and Entrepreneurial

Essential facts

* Where I am at present:
—i_am_at(meadow).

* Where other things are at:
— at(flashlight, building).

* What I am holding:
— holding(key).

* Which facts may be changed:
— .- dynamic i_am_at/1, at/2, holding/1.

I S—————————.

(@‘E"s"a‘ ﬁnggul Smart, Creative and Entrepreneurial

Input and output

* Input 1s unpleasant; we avoid 1t by giving
commands (as questions) directly to Prolog
— take(flashlight).

* write(...) outputs its one argument

* nl ends the line (writes a newline)

» describe(closet) :-
write("You are in an old storage closet.’),
nl.

I S—————————.

(OEs'ra”' Unggul Smart, Creative and Entrepreneurial

The map
N
W E

S
cave_entrance —— cave
meadow
building 1 closet

E—— e —

(aﬁégﬁnggul Smart, Creative and Entrepreneurial

Implementing the map

« path(cave, w, cave_entrance).
path(cave_entrance, e, cave).

« path(meadow, s, building).
path(building, n, meadow).

e Could have done this instead:

— path(cave, w, cave_entrance).
path(X, e, Y) :- path(Y, w, X).

B | : —

I S—————————.

(OEHSE Unggul Smart, Creative and Entrepreneurial

listing

* listing(predicate) is a good way to examine
the current state of the program

o ?2- listing(at).
— at(key, cave_entrance).

at(flashlight, building).
at(sword, closet).

Yes

E— . BR—

I S—————————.

(OE's'ra”' Unggul Smart, Creative and Entrepreneurial

w——— T ———

North, south, east, west

* The commands n, s, €, w all call go.
* n :- go(n).

S .- 80(S).
e :- go(e).

W - 80(W).

E— ! B —

I S—————————.

(@E“s"a“ ﬁnggul Smart, Creative and Entrepreneurial

g0

 go(Direction) :-
i_am_at(Here),
path(Here, Direction, There),
retract(i_am_at(Here)),
assert(i_am_at(There)),
look.

* 90(_) :-
write('You can"t go that way.’).

E— B—

. ;

(OE's'ra”' Unggul Smart, Creative and Entrepreneurial

take .

+ take(X) :-
i_am_at(Place),
at(X, Place),
retract(at(X, Place)),
assert(holding(X)),
write('OK.’),
nl.

D

(OEHSE Unggul Smart, Creative and Entrepreneurial

You can't always take

take(A) :-
holding(A),
write('You\'re already holding it!’), nl.

take(A) :- (actually take something, as before).

take(A) :-
write('l don\'t see it here.’), nl.

E— . BR—

I S—————————.

(OE”S'; Unggul Smart, Creative and Entrepreneurial

Making things fail

* A predicate will fail if 1t doesn't succeed
* You can explicitly use fail
o fail works like this:

fail <—— fail

This often 1sn't strong enough; 1t doesn't force the
entire predicate to fail

‘.ﬁ__ I —

I S—————————.

(OEHSE Unggul Smart, Creative and Entrepreneurial

cut

* The "cut," written ! ,1s a commit point
— It commuts to the clause 1n which 1t occurs, and
— everything before 1t 1n that clause

* Using cut says: Don't try any other clauses,
and don't backtrack past the cut

call —> — > exit

E— . BR—

I S—————————.

(OEHS'S Unggul Smart, Creative and Entrepreneurial

cut-fail

* The cut-fail combination: !, fail means
really fail

e [t commuts to this clause, then fails

* This means no other clauses of this predicate
will be tried, so the predicate as a whole fails

(Oﬁégﬁnggul Smart, Creative and Entrepreneurial

A locked door

« path(building, e, closet) :-
locked(closet),
write('The door appears to be locked.’),
nl,
I, fail.
path(building, e, closet).
* If the closet door 1sn't locked, the first clause
fails "normally," and the second clause 1s used

 If the closet door is locked, the cut prevents the
second clause from ever being reached

B | : —

I S—————————.

(OEHSE Unggul Smart, Creative and Entrepreneurial

Dropping objects

drop(A) :-
holding(A),
i_am_at(B),
retract(holding(A)),
assert(at(A, B)),
write('OK."), nl.
drop(A) :-
write('You aren\'t holding it!’), nl.

E— . BR—

I S—————————.

(aﬁégﬁnggul Smart, Creative and Entrepreneurial

——

What else is Prolog good for?

* Prolog is primarily an Al (Artificial
Intelligence) language

* It's second only to LISP in popularity

* It's more popular in Britain than in the U.S.

* Prolog is also a very enjoyable language in
which to program (subjective opinion,
obviously!)

B | : —

I S—————————.

(@‘E"s"a‘ ﬁnggul Smart, Creative and Entrepreneurial

Prolog vs. LISP

* Unlike LISP, Prolog provides:

— built-in theorem proving

— built in Definite Clause Grammars, good for
parsing natural language

* If you just want to use these tools, Prolog 1s
arguably better

* If you want to build your own theorem prover
or parser, LISP is clearly better

I S—————————.

(agga Unggul Smart, Creative and Entrepreneurial

% The End —

