
CPL230-PENGEMBANGAN
PERANGKAT LUNAK

(PERTEMUAN-3)
Dosen Pengampu :

5165-Kundang K Juman
Prodi Teknik Informatika Fakultas Ilmu Komputer

SOFTWARE

DEVELOPMENT

METHODOLOGIES
2013.04.30

Methodologies

• Waterfall

• Prototype model

• Incremental

• Iterative

• V-Model

• Spiral

• Scrum

• Cleanroom

• RAD

• DSDM

• RUP

• XP

• Agile

• Lean

• Dual Vee Model

• TDD

• FDD

Waterfall

• Sequential design

process

• Progress is seen as

flowing steadily

downwards (like a

waterfall) through

SDLC

Prototyping

• Creating prototypes of
software applications
i.e. incomplete
versions of the
software program
being developed

• A prototype typically
simulates only a few
aspects of, and may
be completely different
from, the final product.

Incremental Build Model

• The model is designed,
implemented and tested
incrementally (a little
more is added each
time).

• Finished when satisfies
all the requirements.

• Combines the elements
of the waterfall model
with the iterative
philosophy of
prototyping.

Iterative and Incremental Development

• Iterative and

incremental

development is any

combination of both

iterative design or

iterative method and

incremental build

model for

development.

Incremental vs. Iterative

A Bit Different Understanding

Effort in Iterative Development

Spiral Model

• Combining elements of
design and prototyping-
in-stages

• Combines the features
of the prototyping and
the waterfall model

• The spiral model is
intended for large,
expensive and
complicated projects

• Advantages of top-down
and bottom-up concepts

Background

• Top-down

• deductive reasoning

• analysis or

decomposition

• Descartes

• G => 1

• Bottom-up

• inductive reasoning

• synthesis

• Bacon

• 1 => G

RAD

• Minimal planning and

fast prototyping.

• Developing instead of

planning

• The lack of pre-

planning generally

allows software to be

written much faster,

and makes it easier to

change requirements.

Cleanroom

• The Cleanroom process
embeds software
development and testing
within a statistical quality
control framework.

• Mathematically-based
software development
processes are employed
to create software that is
correct by design, and
statistical usage testing
processes are employed
to provide inferences
about software reliability.

• This systematic process
of assessing and
controlling software
quality during
development permits
certification of software
fitness for use at
delivery.

Agile

• Group of software
development methods

• Based on iterative and
incremental development

• Most important phrases
• self-organizing, cross-

functional teams

• adaptive planning,

• evolutionary development and
delivery,

• a time-boxed iterative
approach,

• rapid and flexible response to
change.

• A conceptual framework

• The Agile Manifesto in 2001.

Scrum

• Scrum is an iterative and

incremental agile

software development

framework

• A flexible, holistic

product development

strategy

• Development team

works as an atomic unit

• Opposing to sequential

approach

Lean (Kanban)

• A translation of lean

manufacturing

principles and

practices

• Toyota Production

System,

• Today part of Agile

community.

Lean Principles

1. Eliminate waste

2. Amplify learning

3. Decide as late as

possible

4. Deliver as fast as

possible

5. Empower the team

6. Build integrity in

7. See the whole

Extreme Programming (XP)

• Improve software quality
and responsiveness to
changing customer
requirements

• A type of agile software
development

• Frequent "releases" in
short development
cycles

• Introduce checkpoints
where new customer
requirements can be
adopted.

XP Concepts (examples only)

• Pair programming

• Planning game

• Test-driven

development

• Continuous integration

DSDM

• An agile project delivery framework,
primarily

• DSDM fixes cost, quality and time at
the outset and uses the MoSCoW
prioritization of scope

• Pareto principle

• M - MUST: Describes a requirement
that must be satisfied in the final
solution for the solution to be
considered a success.

• S - SHOULD: Represents a high-
priority item that should be included
in the solution if it is possible. This
is often a critical requirement but
one which can be satisfied in other
ways if strictly necessary.

• C - COULD: Describes a
requirement which is considered
desirable but not necessary. This
will be included if time and
resources permit.

• W - WOULD: Represents a
requirement that stakeholders have
agreed will not be implemented in a
given release, but may be
considered for the future.

Test-driven development (TDD)

• Relies on the repetition
of a very short
development cycle: first
the developer writes an
(initially failing)
automated test case that
defines a desired
improvement or new
function, then produces
the minimum amount of
code to pass that test,
and finally refactors the
new code to acceptable
standards.

• Test-first programming
concept of extreme
programming in the
beginning

• Today standalone
methodology

Feature-driven development (FDD)

• Iterative and

incremental

development process.

• An Agile method

• Driven from a client-

valued functionality

(feature) perspective

• Mostly part of other

methodologies

Rational Unified Process (RUP)

• An iterative software
development process
framework created by
the Rational Software
Corporation (IBM)

• Not a concrete
prescriptive process, but
an adaptable framework,
intended to be tailored
by the development
organizations

• Expected to select
elements of the process
that are appropriate

V-model

• The V-model is an

extension of the

waterfall model.

• Show the relationships

between development

phases and test

phases

• Time and project

completeness vs. level

of abstraction

Dual Vee Model

• Describes a model of
complex development

• For example:
• Hardware

• Platform

• Application software

• Development of a system's
architecture is the “big V”
• Components’/entities’

developments are the “small
V”-s

• It shows interactions and
sequences of developing a
complex system and a
system of systems.

Shouldn’t forget

WATERFALL
Details

Waterfall #1

• Jump to next phase only if the prior one is completed

• PROs

• Detailed early analysis cause huge advantages at later phases

• If a bug found earlier, it is much cheaper (and more effective) to fix

than bugs found in a later phase

• Requirement should be set before design starts

• Points to importance of documentation (minimized “broken leg”

issue)

• Disciplined and well-structured approach

• Effective for stable software projects

• Easy to plan from project management point of view

Waterfall #2

• CONs

• Changes are expensive

• Client does not explicitly know what he or she wants

• Client does not explicitly know what is possible to have

• Need to finish every phase fully

• Long projects, difficult to keep the plan

• Designers may not know in advance how complex a feature’s

implementation

• “Measure twice, cut once”

