
CPL230-PENGEMBANGAN
PERANGKAT LUNAK

(PERTEMUAN-4)
Dosen Pengampu :

5165-Kundang K Juman
Prodi Teknik Informatika Fakultas Ilmu Komputer

Slide 3.2

© The McGraw-Hill Companies, 2005

Object-Oriented and

Classical Software

Engineering

Sixth Edition, WCB/McGraw-Hill, 2005

Stephen R. Schach
srs@vuse.vanderbilt.edu

Slide 3.3

© The McGraw-Hill Companies, 2005

CHAPTER 3

SOFTWARE

LIFE-CYCLE

MODELS

Slide 3.4

© The McGraw-Hill Companies, 2005

Overview

 The Unified Process

 Iteration and incrementation within the object-

oriented paradigm

 The requirements workflow

 The analysis workflow

 The design workflow

 The implementation workflow

 The test workflow

Slide 3.5

© The McGraw-Hill Companies, 2005

Overview (contd)

 Postdelivery maintenance

 Retirement

 The phases of the Unified Process

 One- versus two-dimensional life-cycle models

 Improving the software process

 Capability maturity models

 Other software process improvement initiatives

 Costs and benefits of software process

improvement

Slide 3.6

© The McGraw-Hill Companies, 2005

3.1 The Unified Process

 Until recently, three of the most successful object-

oriented methodologies were

Booch’s method

Jacobson’s Objectory

Rumbaugh’s OMT

Slide 3.7

© The McGraw-Hill Companies, 2005

The Unified Process (contd)

 In 1999, Booch, Jacobson, and Rumbaugh

published a complete object-oriented analysis and

design methodology that unified their three

separate methodologies

Original name: Rational Unified Process (RUP)

Next name: Unified Software Development Process

(USDP)

Name used today: Unified Process (for brevity)

Slide 3.8

© The McGraw-Hill Companies, 2005

The Unified Process (contd)

 The Unified Process is not a series of steps for

constructing a software product

No such single “one size fits all” methodology could

exist

There is a wide variety of different types of software

 The Unified Process is an adaptable methodology

It has to be modified for the specific software product to

be developed

Slide 3.9

© The McGraw-Hill Companies, 2005

The Unified Process (contd)

 UML is graphical

A picture is worth a thousand words

 UML diagrams enable software engineers to

communicate quickly and accurately

Slide 3.10

© The McGraw-Hill Companies, 2005

3.2 Iteration and Incrementation within the Object-Oriented Paradigm

 The Unified Process is a modeling technique

A model is a set of UML diagrams that represent various

aspects of the software product we want to develop

 UML stands for unified modeling language

UML is the tool that we use to represent (model) the

target software product

Slide 3.11

© The McGraw-Hill Companies, 2005

Iteration and Incrementation within the Object-Oriented Paradigm (contd)

 The object-oriented paradigm is iterative and

incremental in nature

There is no alternative to repeated iteration and

incrementation until the UML diagrams are satisfactory

Slide 3.12

© The McGraw-Hill Companies, 2005

Iteration and Incrementation within the Object-Oriented Paradigm (contd)

 The version of the Unified Process in this book is

for

Software products small enough to be developed by a

team of three students during the semester or quarter

 However, the modifications to the Unified Process

for developing a large software product are also

discussed

Slide 3.13

© The McGraw-Hill Companies, 2005

Iteration and Incrementation within the Object-Oriented Paradigm (contd)

 The goals of this book include:

A thorough understanding of how to develop smaller

software products

An appreciation of the issues that need to be addressed

when larger software products are constructed

 We cannot learn the complete Unified Process in

one semester or quarter

Extensive study and unending practice are needed

The Unified Process has too many features

A case study of a large-scale software product is huge

Slide 3.14

© The McGraw-Hill Companies, 2005

Iteration and Incrementation within the Object-Oriented Paradigm (contd)

 In this book, we therefore cover much, but not all,

of the Unified Process

The topics covered are adequate for smaller products

 To work on larger software products, experience is

needed

This must be followed by training in the more complex

aspects of the Unified Process

Slide 3.15

© The McGraw-Hill Companies, 2005

3.3 The Requirements Workflow

 The aim of the requirements workflow

To determine the client’s needs

Slide 3.16

© The McGraw-Hill Companies, 2005

Overview of the Requirements Workflow

 First, gain an understanding of the application

domain (or domain, for short)

That is, the specific business environment in which the

software product is to operate

 Second, build a business model

Use UML to describe the client’s business processes

If at any time the client does not feel that the cost is

justified, development terminates immediately

Slide 3.17

© The McGraw-Hill Companies, 2005

Overview of the Requirements Workflow (contd)

 It is vital to determine the client’s constraints

Deadline

 Nowadays software products are often mission critical

Parallel running

Portability

Reliability

Rapid response time

Cost

 The client will rarely inform the developer how much money is

available

 A bidding procedure is used instead

Slide 3.18

© The McGraw-Hill Companies, 2005

Overview of the Requirements Workflow (contd)

 The aim of this concept exploration is to determine

What the client needs, and

Not what the client wants

Slide 3.19

© The McGraw-Hill Companies, 2005

3.4 The Analysis Workflow

 The aim of the analysis workflow

To analyze and refine the requirements

 Why not do this during the requirements workflow?

The requirements artifacts must be totally

comprehensible by the client

 The artifacts of the requirements workflow must

therefore be expressed in a natural (human)

language

All natural languages are imprecise

Slide 3.20

© The McGraw-Hill Companies, 2005

The Analysis Workflow (contd)

 Example from a manufacturing information

system:

“A part record and a plant record are read from the

database. If it contains the letter A directly followed by

the letter Q, then calculate the cost of transporting that

part to that plant”

 To what does it refer?

The part record?

The plant record?

Or the database?

Slide 3.21

© The McGraw-Hill Companies, 2005

The Analysis Workflow (contd)

 Two separate workflows are needed

The requirements artifacts must be expressed in the

language of the client

The analysis artifacts must be precise, and complete

enough for the designers

Slide 3.22

© The McGraw-Hill Companies, 2005

The Specification Document (contd)

 Specification document (“specifications”)

Constitutes a contract

It must not have imprecise phrases like “optimal,” or

“98 percent complete”

 Having complete and correct specifications is

essential for

Testing, and

Maintenance

Slide 3.23

© The McGraw-Hill Companies, 2005

The Specification Document (contd)

 The specification document must not have

Contradictions

Omissions

Incompleteness

Slide 3.24

© The McGraw-Hill Companies, 2005

Software Project Management Plan

 Once the client has signed off the specifications,

detailed planning and estimating begins

 We draw up the software project management

plan, including

Cost estimate

Duration estimate

Deliverables

Milestones

Budget

 This is the earliest possible time for the SPMP

Slide 3.25

© The McGraw-Hill Companies, 2005

3.5 The Design Workflow

 The aim of the design workflow is to refine the

analysis workflow until the material is in a form

that can be implemented by the programmers

Many nonfunctional requirements need to be finalized at

this time, including

 Choice of programming language

 Reuse issues

 Portability issues

Slide 3.26

© The McGraw-Hill Companies, 2005

Classical Design

 Architectural design

Decompose the product into modules

 Detailed design

Design each module:

 Data structures

 Algorithms

Slide 3.27

© The McGraw-Hill Companies, 2005

Object-Oriented Design

 Classes are extracted during the object-oriented

analysis workflow, and

Designed during the design workflow

 Accordingly

Classical architectural design corresponds to part of the

object-oriented analysis workflow

Classical detailed design corresponds to part of the

object-oriented design workflow

Slide 3.28

© The McGraw-Hill Companies, 2005

The Design Workflow (contd)

 Retain design decisions

For when a dead-end is reached, and

To prevent the maintenance team reinventing the wheel

Slide 3.29

© The McGraw-Hill Companies, 2005

3.6 The Implementation Workflow

 The aim of the implementation workflow is to

implement the target software product in the

selected implementation language

A large software product is partitioned into subsystems

The subsystems consist of components or code

artifacts

Slide 3.30

© The McGraw-Hill Companies, 2005

3.7 The Test Workflow

 The test workflow is the responsibility of

Every developer and maintainer, and

The quality assurance group

 Traceability of artifacts is an important requirement

for successful testing

Slide 3.31

© The McGraw-Hill Companies, 2005

3.7.1 Requirements Artifacts

 Every item in the analysis artifacts must be

traceable to an item in the requirements artifacts

Similarly for the design and implementation artifacts

Slide 3.32

© The McGraw-Hill Companies, 2005

3.7.2 Analysis Artifacts

 The analysis artifacts should be checked by

means of a review

Representatives of the client and analysis team must be

present

 The SPMP must be similarly checked

Pay special attention to the cost and duration estimates

Slide 3.33

© The McGraw-Hill Companies, 2005

3.7.3 Design Artifacts

 Design reviews are essential

A client representative is not usually present

Slide 3.34

© The McGraw-Hill Companies, 2005

3.7.4 Implementation Artifacts

 Each component is tested as soon as it has been

implemented

Unit testing

 At the end of each iteration, the completed

components are combined and tested

Integration testing

 When the product appears to be complete, it is

tested as a whole

Product testing

 Once the completed product has been installed on

the client’s computer, the client tests it

Acceptance testing

Slide 3.35

© The McGraw-Hill Companies, 2005

Implementation Artifacts (contd)

 COTS software is released for testing by

prospective clients

Alpha release

Beta release

 There are advantages and disadvantages to being

an alpha or beta release site

Slide 3.36

© The McGraw-Hill Companies, 2005

3.8 Postdelivery Maintenance

 Postdelivery maintenance is an essential

component of software development

More money is spent on postdelivery maintenance than

on all other activities combined

 Problems can be caused by

Lack of documentation of all kinds

Slide 3.37

© The McGraw-Hill Companies, 2005

Postdelivery Maintenance (contd)

 Two types of testing are needed

Testing the changes made during postdelivery

maintenance

Regression testing

 All previous test cases (and their expected

outcomes) need to be retained

Slide 3.38

© The McGraw-Hill Companies, 2005

3.9 Retirement

 Software is can be unmaintainable because

A drastic change in design has occurred

The product must be implemented on a totally new

hardware/operating system

Documentation is missing or inaccurate

Hardware is to be changed—it may be cheaper to

rewrite the software from scratch than to modify it

 These are instances of maintenance (rewriting of

existing software)

Slide 3.39

© The McGraw-Hill Companies, 2005

Retirement (contd)

 True retirement is a rare event

 It occurs when the client organization no longer

needs the functionality provided by the product

Slide 3.40

© The McGraw-Hill Companies, 2005

3.10 The Phases of the Unified Process

 The increments are identified as phases

Figure 3.1

Slide 3.41

© The McGraw-Hill Companies, 2005

The Phases of the Unified Process (contd)

 The four increments are labeled

Inception phase

Elaboration phase

Construction phase

Transition phase

 The phases of the Unified Process are the

increments

Slide 3.42

© The McGraw-Hill Companies, 2005

The Phases of the Unified Process (contd)

 In theory, there could be any number of

increments

In practice, development seems to consist of four

increments

 Every step performed in the Unified Process falls

into

One of the five core workflows and also

One of the four phases

 Why does each step have to be considered twice?

Slide 3.43

© The McGraw-Hill Companies, 2005

The Phases of the Unified Process (contd)

 Workflow

Technical context of a step

 Phase

Business context of a step

Slide 3.44

© The McGraw-Hill Companies, 2005

3.10.1 The Inception Phase

 The aim of the inception phase is to determine

whether the proposed software product is

economically viable

Slide 3.45

© The McGraw-Hill Companies, 2005

The Inception Phase (contd)

 1. Gain an understanding of the domain

 2. Build the business model

 3. Delimit the scope of the proposed project

Focus on the subset of the business model that is

covered by the proposed software product

 4. Begin to make the initial business case

Slide 3.46

© The McGraw-Hill Companies, 2005

The Inception Phase : The Initial Business Case

 Questions that need to be answered include:

Is the proposed software product cost effective?

How long will it take to obtain a return on investment?

Alternatively, what will be the cost if the company decides

not to develop the proposed software product?

If the software product is to be sold in the marketplace, have

the necessary marketing studies been performed?

Can the proposed software product be delivered in time?

If the software product is to be developed to support the

client organization’s own activities, what will be the impact if

the proposed software product is delivered late?

Slide 3.47

© The McGraw-Hill Companies, 2005

The Inception Phase: The Initial Business Case

 What are the risks involved in developing the

software product, and

 How can these risks be mitigated?

Does the team who will develop the proposed software

product have the necessary experience?

Is new hardware needed for this software product?

If so, is there a risk that it will not be delivered in time?

If so, is there a way to mitigate that risk, perhaps by

ordering back-up hardware from another supplier?

Are software tools (Chapter 5) needed?

Are they currently available?

Do they have all the necessary functionality?

Slide 3.48

© The McGraw-Hill Companies, 2005

The Inception Phase: The Initial Business Case

 Answers are needed by the end of the inception

phase so that the initial business case can be

made

Slide 3.49

© The McGraw-Hill Companies, 2005

The Inception Phase: Risks

 There are three major risk categories:

Technical risks

 See earlier slide

The risk of not getting the requirements right

 Mitigated by performing the requirements workflow correctly

The risk of not getting the architecture right

 The architecture may not be sufficiently robust

Slide 3.50

© The McGraw-Hill Companies, 2005

The Inception Phase: Risks

 To mitigate all three classes of risks

The risks need to be ranked so that the critical risks are

mitigated first

 This concludes the steps of the inception phase

that fall under the requirements workflow

Slide 3.51

© The McGraw-Hill Companies, 2005

The Inception Phase: Analysis, Design Workflows

 A small amount of the analysis workflow may be

performed during the inception phase

Information needed for the design of the architecture is

extracted

 Accordingly, a small amount of the design

workflow may be performed, too

Slide 3.52

© The McGraw-Hill Companies, 2005

The Inception Phase: Implementation Workflow

 Coding is generally not performed during the

inception phase

 However, a proof-of-concept prototype is

sometimes build to test the feasibility of

constructing part of the software product

Slide 3.53

© The McGraw-Hill Companies, 2005

The Inception Phase: Test Workflow

 The test workflow commences almost at the start

of the inception phase

The aim is to ensure that the requirements have been

accurately determined

Slide 3.54

© The McGraw-Hill Companies, 2005

The Inception Phase: Planning

 There is insufficient information at the beginning of

the inception phase to plan the entire development

The only planning that is done at the start of the project

is the planning for the inception phase itself

 For the same reason, the only planning that can

be done at the end of the inception phase is the

plan for just the next phase, the elaboration phase

Slide 3.55

© The McGraw-Hill Companies, 2005

The Inception Phase: Documentation

 The deliverables of the inception phase include:

The initial version of the domain model

The initial version of the business model

The initial version of the requirements artifacts

A preliminary version of the analysis artifacts

A preliminary version of the architecture

The initial list of risks

The initial ordering of the use cases (Chapter 10)

The plan for the elaboration phase

The initial version of the business case

Slide 3.56

© The McGraw-Hill Companies, 2005

The Inception Phase: The Initial Business Case

 Obtaining the initial version of the business case is

the overall aim of the inception phase

 This initial version incorporates

A description of the scope of the software product

Financial details

If the proposed software product is to be marketed, the

business case will also include

 Revenue projections, market estimates, initial cost estimates

If the software product is to be used in-house, the

business case will include

 The initial cost–benefit analysis

Slide 3.57

© The McGraw-Hill Companies, 2005

3.10.2 Elaboration Phase

 The aim of the elaboration phase is to refine the

initial requirements

Refine the architecture

Monitor the risks and refine their priorities

Refine the business case

Produce the project management plan

 The major activities of the elaboration phase are

refinements or elaborations of the previous phase

Slide 3.58

© The McGraw-Hill Companies, 2005

The Tasks of the Elaboration Phase

 The tasks of the elaboration phase correspond to:

All but completing the requirements workflow

Performing virtually the entire analysis workflow

Starting the design of the architecture

Slide 3.59

© The McGraw-Hill Companies, 2005

The Elaboration Phase: Documentation

 The deliverables of the elaboration phase include:

The completed domain model

The completed business model

The completed requirements artifacts

The completed analysis artifacts

An updated version of the architecture

An updated list of risks

The project management plan (for the rest of the

project)

The completed business case

Slide 3.60

© The McGraw-Hill Companies, 2005

3.10.3 Construction Phase

 The aim of the construction phase is to produce

the first operational-quality version of the software

product

This is sometimes called the beta release

Slide 3.61

© The McGraw-Hill Companies, 2005

The Tasks of the Construction Phase

 The emphasis in this phase is on

Implementation, and

Testing

 Unit testing of modules

 Integration testing of subsystems

 Product testing of the overall system

Slide 3.62

© The McGraw-Hill Companies, 2005

The Construction Phase: Documentation

 The deliverables of the construction phase

include:

The initial user manual and other manuals, as

appropriate

All the artifacts (beta release versions)

The completed architecture

The updated risk list

The project management plan (for the remainder of the

project)

If necessary, the updated business case

Slide 3.63

© The McGraw-Hill Companies, 2005

3.10.4 The Transition Phase

 The aim of the transition phase is to ensure that

the client’s requirements have indeed been met

Faults in the software product are corrected

All the manuals are completed

Attempts are made to discover any previously

unidentified risks

 This phase is driven by feedback from the site(s)

at which the beta release has been installed

Slide 3.64

© The McGraw-Hill Companies, 2005

The Transition Phase: Documentation

 The deliverables of the transition phase include:

All the artifacts (final versions)

The completed manuals

Slide 3.65

© The McGraw-Hill Companies, 2005

3.11 One- and Two-Dimensional Life-Cycle Models

Figure 3.2

Slide 3.66

© The McGraw-Hill Companies, 2005

Why a Two-Dimensional Model?

 A traditional life cycle is a one-dimensional model

Represented by the single axis on the previous slide

 Example: Waterfall model

 The Unified Process is a two-dimensional model

Represented by the two axes on the previous slide

 The two-dimensional figure shows

The workflows (technical contexts), and

The phases (business contexts)

Slide 3.67

© The McGraw-Hill Companies, 2005

Why a Two-Dimensional Model? (contd)

 The waterfall model

 One-dimensional

Figure 2.3 (again)

Slide 3.68

© The McGraw-Hill Companies, 2005

Why a Two-Dimensional Model? (contd)

 Evolution tree model

 Two-dimensional

Figure 2.2 (again)

Slide 3.69

© The McGraw-Hill Companies, 2005

Why a Two-Dimensional Model? (contd)

 Are all the additional complications of the two-

dimensional model necessary?

 In an ideal world, each workflow would be

completed before the next workflow is started

Slide 3.70

© The McGraw-Hill Companies, 2005

Why a Two-Dimensional Model? (contd)

 In reality, the development task is too big for this

 As a consequence of Miller’s Law

The development task has to be divided into increments

(phases)

Within each increment, iteration is performed until the

task is complete

Slide 3.71

© The McGraw-Hill Companies, 2005

Why a Two-Dimensional Model? (contd)

 At the beginning of the process, there is not

enough information about the software product to

carry out the requirements workflow

Similarly for the other core workflows

 A software product has to be broken into

subsystems

 Even subsystems can be too large at times

Modules may be all that can be handled until a fuller

understanding of all the parts of the product as a whole

has been obtained

Slide 3.72

© The McGraw-Hill Companies, 2005

Why a Two-Dimensional Model? (contd)

 The Unified Process handles the inevitable

changes well

The moving target problem

The inevitable mistakes

 The Unified Process is the best solution found to

date for treating a large problem as a set of

smaller, largely independent subproblems

It provides a framework for incrementation and iteration

In the future, it will inevitably be superseded by some

better methodology

Slide 3.73

© The McGraw-Hill Companies, 2005

3.12 Improving the Software Process

 Example:

 U.S. Department of Defense initiative

 Software Engineering Institute (SEI)

 The fundamental problem with software

The software process is badly managed

Slide 3.74

© The McGraw-Hill Companies, 2005

Improving the Software Process (contd)

 Software process improvement initiatives

Capability maturity model (CMM)

ISO 9000-series

ISO/IEC 15504

Slide 3.75

© The McGraw-Hill Companies, 2005

3.13 Capability Maturity Models

 Not a life-cycle model

 Rather, a set of strategies for improving the
software process
SW–CMM for software

P–CMM for human resources (“people”)

SE–CMM for systems engineering

IPD–CMM for integrated product development

SA–for software acquisition

 These strategies are unified into CMMI (capability
maturity model integration)

Slide 3.76

© The McGraw-Hill Companies, 2005

SW–CMM

 A strategy for improving the software process

 Put forward in 1986 by the SEI

 Fundamental ideas:

Improving the software process leads to

 Improved software quality

 Delivery on time, within budget

Improved management leads to

 Improved techniques

Slide 3.77

© The McGraw-Hill Companies, 2005

SW–CMM (contd)

 Five levels of maturity are defined

Maturity is a measure of the goodness of the process

itself

 An organization advances stepwise from level to

level

Slide 3.78

© The McGraw-Hill Companies, 2005

Level 1. Initial Level

 Ad hoc approach

The entire process is unpredictable

Management consists of responses to crises

 Most organizations world-wide are at level 1

Slide 3.79

© The McGraw-Hill Companies, 2005

Level 2. Repeatable Level

 Basic software management

Management decisions should be made on the basis

of previous experience with similar products

Measurements (“metrics”) are made

These can be used for making cost and duration

predictions in the next project

Problems are identified, immediate corrective action

is taken

Slide 3.80

© The McGraw-Hill Companies, 2005

Level 3. Defined Level

 The software process is fully documented

Managerial and technical aspects are clearly defined

Continual efforts are made to improve quality and

productivity

Reviews are performed to improve software quality

CASE tools are applicable now (and not at levels 1 or 2)

Slide 3.81

© The McGraw-Hill Companies, 2005

Level 4. Managed Level

 Quality and productivity goals are set for each

project

Quality and productivity are continually monitored

Statistical quality controls are in place

Slide 3.82

© The McGraw-Hill Companies, 2005

Level 5. Optimizing Level

 Continuous process improvement

Statistical quality and process controls

Feedback of knowledge from each project to the next

Slide 3.83

© The McGraw-Hill Companies, 2005

Summary

Figure 3.3

Slide 3.84

© The McGraw-Hill Companies, 2005

Experiences with SW–CMM

 It takes:

3 to 5 years to get from level 1 to level 2

1.5 to 3 years from level 2 to level 3

SEI questionnaires highlight shortcomings, suggest

ways to improve the process

Slide 3.85

© The McGraw-Hill Companies, 2005

Key Process Areas

 There are key process areas (KPAs) for each

level

Slide 3.86

© The McGraw-Hill Companies, 2005

Key Process Areas (contd)

 Level-2 KPAs include:

Requirements management

Project planning

Project tracking

Configuration management

Quality assurance

 Compare

Level 2: Detection and correction of faults

Level 5: Prevention of faults

Slide 3.87

© The McGraw-Hill Companies, 2005

Goals

 Original goal:

Defense contracts would be awarded only to capable

firms

 The U.S. Air Force stipulated that every Air Force

contractor had to attain SW–CMM level 3 by 1998

DoD subsequently issued a similar directive

 The CMM has now gone far beyond the limited

goal of improving DoD software

Slide 3.88

© The McGraw-Hill Companies, 2005

3.14 Other Software Process Improvement Initiatives

 Other software process improvement (SPI)

initiatives include:

ISO 9000-series

ISO/IEC 15504

Slide 3.89

© The McGraw-Hill Companies, 2005

ISO 9000

 A set of five standards for industrial activities

ISO 9001 for quality systems

ISO 9000-3, guidelines to apply ISO 9001 to software

There is an overlap with CMM, but they are not identical

Not process improvement

There is a stress on documenting the process

There is an emphasis on measurement and metrics

ISO 9000 is required to do business with the EU

Also required by many U.S. businesses, including GE

More and more U.S. businesses are ISO 9000 certified

Slide 3.90

© The McGraw-Hill Companies, 2005

ISO/IEC 15504

 Original name: Software Process Improvement

Capability dEtermination (SPICE)

International process improvement initiative

Started by the British Ministry of Defence (MOD)

Includes process improvement, software procurement

Extends and improves CMM, ISO 9000

A framework, not a method

 CMM, ISO 9000 conform to this framework

Now referred to as ISO/IEC 15504

Or just 15504 for short

Slide 3.91

© The McGraw-Hill Companies, 2005

3.15 Costs and Benefits of Software Process Improvement

 Hughes Aircraft (Fullerton, CA) spent $500K

(1987–90)

Savings: $2M per year, moving from level 2 to level 3

 Raytheon moved from level 1 in 1988 to level 3 in

1993

Productivity doubled

Return of $7.70 per dollar invested in process

improvement

Slide 3.92

© The McGraw-Hill Companies, 2005

Costs and Benefits of Software Process Improvement (contd)

 Tata Consultancy Services (India) used ISO 9000

and CMM (1996–90)

Errors in estimation decreased from 50% to 15%

Effectiveness of reviews increased from 40% to 80%

 Motorola GED has used CMM (1992–97)

Results are shown in the next slide

Slide 3.93

© The McGraw-Hill Companies, 2005

Results of 34 Motorola Projects

 MEASL – Million equivalent assembler source lines

 Motorola does not reveal productivity data

Productivity is measured relative to that of a selected level-2 project

No fault or productivity data available for level-1 projects (by

definition)

Figure 3.4

Slide 3.94

© The McGraw-Hill Companies, 2005

Costs and Benefits of Software Process Improvement (contd)

 There is interplay between

Software engineering standards organizations, and

Software process improvement initiatives

 ISO/IEC 12207 (1995) is a full life-cycle software

standard

 In 1998, the U.S. version (IEEE/EIA 12207) was

published that incorporated ideas from CMM

 ISO 9000-3 now incorporates part of ISO/IEC

12207

