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CHAPTER 3

SOFTWARE 
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Overview

 The  Unified Process

 Iteration and incrementation within the object-

oriented paradigm

 The requirements workflow

 The analysis workflow

 The design workflow

 The implementation workflow

 The test workflow
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Overview (contd)

 Postdelivery maintenance

 Retirement

 The phases of the Unified Process

 One- versus two-dimensional life-cycle models

 Improving the software process

 Capability maturity models

 Other software process improvement initiatives

 Costs and benefits of software process 

improvement
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3.1  The Unified Process

 Until recently, three of the most successful object-

oriented methodologies were 

Booch’s method

Jacobson’s Objectory

Rumbaugh’s OMT



Slide 3.7

© The McGraw-Hill Companies, 2005

The Unified Process (contd)

 In 1999, Booch, Jacobson, and Rumbaugh 

published a complete object-oriented analysis and 

design methodology that unified their three 

separate methodologies

Original name: Rational Unified Process (RUP)

Next name: Unified Software Development Process

(USDP) 

Name used today: Unified Process (for brevity)
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The Unified Process (contd)

 The Unified Process is not a series of steps for 

constructing a software product

No such single “one size fits all” methodology could 

exist

There is a wide variety of different types of software

 The Unified Process is an adaptable methodology

It has to be modified for the specific software product to 

be developed
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The Unified Process (contd)

 UML is graphical

A picture is worth a thousand words

 UML diagrams enable software engineers to 

communicate quickly and accurately
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3.2  Iteration and Incrementation within the Object-Oriented Paradigm

 The Unified Process is a modeling technique

A model is a set of UML diagrams that represent various 

aspects of the software product we want to develop

 UML stands for unified modeling language

UML is the tool that we use to represent (model) the 

target software product
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Iteration and Incrementation within the Object-Oriented Paradigm (contd)

 The object-oriented paradigm is iterative and 

incremental in nature

There is no alternative to repeated iteration and 

incrementation until the UML diagrams are satisfactory
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Iteration and Incrementation within the Object-Oriented Paradigm (contd)

 The version of the Unified Process in this book is 

for  

Software products small enough to be developed by a 

team of three students during the semester or quarter

 However, the modifications to the Unified Process 

for developing a large software product are also 

discussed
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Iteration and Incrementation within the Object-Oriented Paradigm (contd)

 The goals of this book include:

A thorough understanding of how to develop smaller 

software products

An appreciation of the issues that need to be addressed 

when larger software products are constructed

 We cannot learn the complete Unified Process in 

one semester or quarter  

Extensive study and unending practice are needed

The Unified Process has too many features

A case study of a large-scale software product is huge
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Iteration and Incrementation within the Object-Oriented Paradigm (contd)

 In this book, we therefore cover much, but not all, 

of the Unified Process

The topics covered are adequate for smaller products

 To work on larger software products, experience is 

needed 

This must be followed by training in the more complex 

aspects of the Unified Process
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3.3  The Requirements Workflow

 The aim of the requirements workflow

To determine the client’s needs
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Overview of the Requirements Workflow

 First, gain an understanding of the application 

domain (or domain, for short)

That is, the specific business environment in which the 

software product is to operate

 Second, build a business model

Use UML to describe the client’s business processes

If at any time the client does not feel that the cost is 

justified, development terminates immediately
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Overview of the Requirements Workflow (contd)

 It is vital to determine the client’s constraints

Deadline

 Nowadays software products are often mission critical

Parallel running 

Portability

Reliability

Rapid response time

Cost

 The client will rarely inform the developer how much money is 

available

 A bidding procedure is used instead



Slide 3.18

© The McGraw-Hill Companies, 2005

Overview of the Requirements Workflow (contd)

 The aim of this concept exploration is to determine

What the client needs, and

Not what the client wants
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3.4  The Analysis Workflow

 The aim of the analysis workflow

To analyze and refine the requirements

 Why not do this during the requirements workflow?

The requirements artifacts must be totally 

comprehensible by the client

 The artifacts of the requirements workflow must 

therefore be expressed in a natural (human) 

language

All natural languages are imprecise
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The Analysis Workflow (contd)

 Example from a manufacturing information 

system:

“A part record and a plant record are read from the 

database.  If it contains the letter A directly followed by 

the letter Q, then calculate the cost of transporting that 

part to that plant”

 To what does it refer?  

The part record? 

The plant record?

Or the database?
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The Analysis Workflow (contd)

 Two separate workflows are needed

The requirements artifacts must be expressed in the 

language of the client

The analysis artifacts must be precise, and complete 

enough for the designers
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The Specification Document (contd)

 Specification document (“specifications”)

Constitutes a contract

It must not have imprecise phrases like “optimal,” or   

“98 percent complete”

 Having complete and correct specifications is 

essential for

Testing, and

Maintenance
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The Specification Document (contd)

 The specification document must not have

Contradictions

Omissions

Incompleteness
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Software Project Management Plan

 Once the client has signed off the specifications, 

detailed planning and estimating begins

 We draw up the software project management 

plan, including

Cost estimate

Duration estimate

Deliverables

Milestones

Budget

 This is the earliest possible time for the SPMP
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3.5  The Design Workflow

 The aim of the design workflow is to refine the 

analysis workflow until the material is in a form 

that can be implemented by the programmers

Many nonfunctional requirements need to be finalized at 

this time, including

 Choice of programming language

 Reuse issues

 Portability issues
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Classical Design

 Architectural design

Decompose the product into modules

 Detailed design

Design each module: 

 Data structures

 Algorithms
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Object-Oriented Design

 Classes are extracted during the object-oriented 

analysis workflow, and

Designed during the design workflow

 Accordingly

Classical architectural design corresponds to part of the 

object-oriented analysis workflow

Classical detailed design corresponds to part of the 

object-oriented design workflow
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The Design Workflow (contd)

 Retain design decisions

For when a dead-end is reached, and

To prevent the maintenance team reinventing the wheel
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3.6  The Implementation Workflow

 The aim of the implementation workflow is to 

implement the target software product in the 

selected implementation language

A large software product is partitioned into subsystems

The subsystems consist of components or code 

artifacts
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3.7  The Test Workflow

 The test workflow is the responsibility of 

Every developer and maintainer, and

The quality assurance group

 Traceability of artifacts is an important requirement 

for successful testing
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3.7.1  Requirements Artifacts

 Every item in the analysis artifacts must be 

traceable to an item in the requirements artifacts

Similarly for the design and implementation artifacts
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3.7.2  Analysis Artifacts

 The analysis artifacts should be checked by 

means of a review

Representatives of the client and analysis team must be 

present

 The SPMP must be similarly checked

Pay special attention to the cost and duration estimates
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3.7.3  Design Artifacts

 Design reviews are essential

A client representative is not usually present
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3.7.4  Implementation Artifacts

 Each component is tested as soon as it has been 

implemented

Unit testing

 At the end of each iteration, the completed 

components are combined and tested

Integration testing 

 When the product appears to be complete, it is 

tested as a whole

Product testing

 Once the completed product has been installed on 

the client’s computer, the client tests it

Acceptance testing
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Implementation Artifacts (contd)

 COTS software is released for testing by 

prospective clients

Alpha release

Beta release

 There are advantages and disadvantages to being 

an alpha or beta release site
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3.8  Postdelivery Maintenance

 Postdelivery maintenance is an essential 

component of software development

More money is spent on postdelivery maintenance than 

on all other activities combined

 Problems can be caused by

Lack of documentation of all kinds
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Postdelivery Maintenance (contd)

 Two types of testing are needed

Testing the changes made during postdelivery 

maintenance

Regression testing

 All previous test cases (and their expected 

outcomes) need to be retained
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3.9  Retirement

 Software is can be unmaintainable because

A drastic change in design has occurred

The product must be implemented on a totally new 

hardware/operating system

Documentation is missing or inaccurate

Hardware is to be changed—it may be cheaper to 

rewrite the software from scratch than to modify it

 These are instances of maintenance (rewriting of 

existing software)
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Retirement (contd)

 True retirement is a rare event

 It occurs when the client organization no longer 

needs the functionality provided by the product
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3.10  The Phases of the Unified Process

 The increments are identified as phases

Figure 3.1
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The Phases of the Unified Process (contd)

 The four increments are labeled

Inception phase

Elaboration phase

Construction phase

Transition phase

 The phases of the Unified Process are the 

increments
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The Phases of the Unified Process (contd)

 In theory, there could be any number of 

increments

In practice, development seems to consist of four 

increments

 Every step performed in the Unified Process falls 

into 

One of the five core workflows and also

One of the four phases

 Why does each step have to be considered twice?
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The Phases of the Unified Process (contd)

 Workflow

Technical context of a step

 Phase

Business context of a step



Slide 3.44

© The McGraw-Hill Companies, 2005

3.10.1  The Inception Phase

 The aim of the inception phase is to determine 

whether the proposed software product is 

economically viable
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The Inception Phase (contd)

 1. Gain an understanding of the domain

 2. Build the business model

 3. Delimit the scope of the proposed project

Focus on the subset of the business model that is 

covered by the proposed software product

 4. Begin to make the initial business case
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The Inception Phase : The Initial Business Case

 Questions that need to be answered include:

Is the proposed software product cost effective?  

How long will it take to obtain a return on investment?  

Alternatively, what will be the cost if the company decides 

not to develop the proposed software product?  

If the software product is to be sold in the marketplace, have 

the necessary marketing studies been performed?

Can the proposed software product be delivered in time?  

If the software product is to be developed to support the 

client organization’s own activities, what will be the impact if 

the proposed software product is delivered late?
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The Inception Phase: The Initial Business Case

 What are the risks involved in developing the 

software product, and

 How can these risks be mitigated?  

Does the team who will develop the proposed software 

product have the necessary experience?  

Is new hardware needed for this software product?

If so, is there a risk that it will not be delivered in time?  

If so, is there a way to mitigate that risk, perhaps by 

ordering back-up hardware from another supplier?  

Are software tools (Chapter 5) needed?  

Are they currently available?  

Do they have all the necessary functionality?  
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The Inception Phase: The Initial Business Case

 Answers are needed by the end of the inception 

phase so that the initial business case can be 

made
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The Inception Phase: Risks

 There are three major risk categories:

Technical risks 

 See earlier slide

The risk of not getting the requirements right

 Mitigated by performing the requirements workflow correctly

The risk of not getting the architecture right

 The architecture may not be sufficiently robust  
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The Inception Phase: Risks

 To mitigate all three classes of risks

The risks need to be ranked so that the critical risks are 

mitigated first

 This concludes the steps of the inception phase 

that fall under the requirements workflow
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The Inception Phase: Analysis, Design Workflows

 A small amount of the analysis workflow may be 

performed during the inception phase

Information needed for the design of the architecture is 

extracted

 Accordingly, a small amount of the design 

workflow may be performed, too
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The Inception Phase: Implementation Workflow

 Coding is generally not performed during the 

inception phase

 However, a proof-of-concept prototype is 

sometimes build to test the feasibility of 

constructing part of the software product
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The Inception Phase: Test Workflow

 The test workflow commences almost at the start 

of the inception phase

The aim is to ensure that the requirements have been 

accurately determined
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The Inception Phase: Planning

 There is insufficient information at the beginning of 

the inception phase to plan the entire development

The only planning that is done at the start of the project 

is the planning for the inception phase itself

 For the same reason, the only planning that can 

be done at the end of the inception phase is the 

plan for just the next phase, the elaboration phase
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The Inception Phase: Documentation

 The deliverables of the inception phase include:

The initial version of the domain model

The initial version of the business model

The initial version of the requirements artifacts 

A preliminary version of the analysis artifacts

A preliminary version of the architecture

The initial list of risks

The initial ordering of the use cases (Chapter 10)

The plan for the elaboration phase

The initial version of the business case
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The Inception Phase: The Initial Business Case

 Obtaining the initial version of the business case is 

the overall aim of the inception phase

 This initial version incorporates 

A description of the scope of the software product 

Financial details

If the proposed software product is to be marketed, the 

business case will also include 

 Revenue projections, market estimates, initial cost estimates

If the software product is to be used in-house, the 

business case will include

 The initial cost–benefit analysis
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3.10.2  Elaboration Phase

 The aim of the elaboration phase is to refine the 

initial requirements

Refine the architecture

Monitor the risks and refine their priorities

Refine the business case

Produce the project management plan

 The major activities of the elaboration phase are 

refinements or elaborations of the previous phase
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The Tasks of the Elaboration Phase

 The tasks of the elaboration phase correspond to:

All but completing the requirements workflow 

Performing virtually the entire analysis workflow 

Starting the design of the architecture
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The Elaboration Phase: Documentation

 The deliverables of the elaboration phase include:

The completed domain model

The completed business model

The completed requirements artifacts

The completed analysis artifacts

An updated version of the architecture

An updated list of risks

The project management plan (for the rest of the 

project)

The completed business case
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3.10.3  Construction Phase

 The aim of the construction phase is to produce 

the first operational-quality version of the software 

product

This is sometimes called the beta release
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The Tasks of the Construction Phase

 The emphasis in this phase is on 

Implementation, and

Testing

 Unit testing of modules

 Integration testing of subsystems

 Product testing of the overall system 
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The Construction Phase: Documentation

 The deliverables of the construction phase 

include:

The initial user manual and other manuals, as 

appropriate

All the artifacts (beta release versions)

The completed architecture

The updated risk list

The project management plan (for the remainder of the 

project)

If necessary, the updated business case
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3.10.4  The Transition Phase

 The aim of the transition phase is to ensure that 

the client’s requirements have indeed been met

Faults in the software product are corrected

All the manuals are completed

Attempts are made to discover any previously 

unidentified risks

 This phase is driven by feedback from the site(s) 

at which the beta release has been installed
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The Transition Phase: Documentation

 The deliverables of the transition phase include:

All the artifacts (final versions)

The completed manuals
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3.11 One- and Two-Dimensional Life-Cycle Models

Figure 3.2
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Why a Two-Dimensional Model?

 A traditional life cycle is a one-dimensional model 

Represented by the single axis on the previous slide

 Example: Waterfall model 

 The Unified Process is a two-dimensional model

Represented by the two axes on the previous slide

 The two-dimensional figure shows 

The workflows (technical contexts), and 

The phases (business contexts)
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Why a Two-Dimensional Model? (contd)

 The waterfall model

 One-dimensional

Figure 2.3 (again)
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Why a Two-Dimensional Model? (contd)

 Evolution tree model

 Two-dimensional

Figure 2.2 (again)
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Why a Two-Dimensional Model? (contd)

 Are all the additional complications of the two-

dimensional model necessary?

 In an ideal world, each workflow would be 

completed before the next workflow is started
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Why a Two-Dimensional Model? (contd)

 In reality, the development task is too big for this

 As a consequence of Miller’s Law

The development task has to be divided into increments 

(phases)

Within each increment, iteration is performed until the 

task is complete 
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Why a Two-Dimensional Model? (contd)

 At the beginning of the process, there is not 

enough information about the software product to 

carry out the requirements workflow 

Similarly for the other core workflows

 A software product has to be broken into 

subsystems

 Even subsystems can be too large at times

Modules may be all that can be handled until a fuller 

understanding of all the parts of the product as a whole 

has been obtained
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Why a Two-Dimensional Model? (contd)

 The Unified Process handles the inevitable 

changes well

The moving target problem

The inevitable mistakes

 The Unified Process is the best solution found to 

date for treating a large problem as a set of 

smaller, largely independent subproblems

It provides a framework for incrementation and iteration

In the future, it will inevitably be superseded by some 

better methodology
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3.12  Improving the Software Process

 Example:

 U.S. Department of Defense initiative

 Software Engineering Institute (SEI) 

 The fundamental problem with software

The software process is badly managed
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Improving the Software Process (contd)

 Software process improvement initiatives

Capability maturity model (CMM)

ISO 9000-series

ISO/IEC 15504
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3.13  Capability Maturity Models

 Not a life-cycle model

 Rather, a set of strategies for improving the 
software process
SW–CMM for software

P–CMM for human resources (“people”)

SE–CMM for systems engineering

IPD–CMM for integrated product development

SA–for software acquisition

 These strategies are unified into CMMI (capability 
maturity model integration)
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SW–CMM

 A strategy for improving the software process

 Put forward in 1986 by the SEI 

 Fundamental ideas:

Improving the software process leads to

 Improved software quality

 Delivery on time, within budget

Improved management leads to

 Improved techniques
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SW–CMM (contd)

 Five levels of maturity are defined

Maturity is a measure of the goodness of the process 

itself

 An organization advances stepwise from level to 

level
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Level 1.  Initial Level

 Ad hoc approach

The entire process is unpredictable

Management consists of responses to crises

 Most organizations world-wide are at level 1
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Level 2.  Repeatable Level

 Basic software management

Management decisions should be made on the basis 

of previous experience with similar products

Measurements (“metrics”) are made

These can be used for making cost and duration 

predictions in the next project

Problems are identified, immediate corrective action 

is taken
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Level 3.  Defined Level

 The software process is fully documented

Managerial and technical aspects are clearly defined

Continual efforts are made to improve quality and 

productivity

Reviews are performed to improve software quality

CASE tools are applicable now (and not at levels 1 or 2)
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Level 4.  Managed Level

 Quality and productivity goals are set for each  

project

Quality and productivity are continually monitored

Statistical quality controls are in place
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Level 5.  Optimizing Level

 Continuous process improvement

Statistical quality and process controls

Feedback of knowledge from each project to the next
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Summary

Figure 3.3
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Experiences with SW–CMM

 It takes:

3 to 5 years to get from level 1 to level 2 

1.5 to 3 years from level 2 to level 3

SEI questionnaires highlight shortcomings, suggest 

ways to improve the process
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Key Process Areas

 There are key process areas (KPAs) for each 

level
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Key Process Areas (contd)

 Level-2 KPAs include:

Requirements management

Project planning

Project tracking

Configuration management

Quality assurance

 Compare

Level 2: Detection and correction of faults

Level 5: Prevention of faults
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Goals

 Original goal:

Defense contracts would be awarded only to capable 

firms

 The U.S. Air Force stipulated that every Air Force 

contractor had to attain SW–CMM level 3 by 1998

DoD subsequently issued a similar directive

 The CMM has now gone far beyond the limited 

goal of improving DoD software
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3.14  Other Software Process Improvement Initiatives

 Other software process improvement (SPI) 

initiatives include:

ISO 9000-series

ISO/IEC 15504
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ISO 9000

 A set of five standards for industrial activities

ISO 9001 for quality systems

ISO 9000-3, guidelines to apply ISO 9001 to software

There is an overlap with CMM, but they are not identical

Not process improvement

There is a stress on documenting the process

There is an emphasis on measurement and metrics

ISO 9000 is required to do business with the EU

Also required by many U.S. businesses, including GE

More and more U.S. businesses are ISO 9000 certified
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ISO/IEC 15504

 Original name: Software Process Improvement 

Capability dEtermination (SPICE)

International process improvement initiative

Started by the British Ministry of Defence (MOD)

Includes process improvement, software procurement

Extends and improves CMM, ISO 9000

A framework, not a method

 CMM, ISO 9000 conform to this framework

Now referred to as ISO/IEC 15504

Or just 15504 for short
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3.15  Costs and Benefits of Software Process Improvement

 Hughes Aircraft (Fullerton, CA) spent $500K 

(1987–90)

Savings: $2M per year, moving from level 2 to level 3

 Raytheon moved from level 1 in 1988 to level 3 in 

1993

Productivity doubled

Return of $7.70 per dollar invested in process 

improvement



Slide 3.92

© The McGraw-Hill Companies, 2005

Costs and Benefits of Software Process Improvement (contd)

 Tata Consultancy Services (India) used ISO 9000 

and CMM (1996–90)

Errors in estimation decreased from 50% to 15%

Effectiveness of reviews increased from 40% to 80%

 Motorola GED has used CMM (1992–97)

Results are shown in the next slide
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Results of 34 Motorola Projects

 MEASL – Million equivalent assembler source lines

 Motorola does not reveal productivity data

Productivity is measured relative to that of a selected level-2 project

No fault or productivity data available for level-1 projects (by 

definition)

Figure 3.4
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Costs and Benefits of Software Process Improvement (contd)

 There is interplay between 

Software engineering standards organizations, and

Software process improvement initiatives

 ISO/IEC 12207 (1995) is a full life-cycle software 

standard

 In 1998, the U.S. version (IEEE/EIA 12207) was 

published that incorporated ideas from CMM 

 ISO 9000-3 now incorporates part of ISO/IEC 

12207


