
CPL230-PENGEMBANGAN
PERANGKAT LUNAK

(PERTEMUAN-4)
Dosen Pengampu :

5165-Kundang K Juman
Prodi Teknik Informatika Fakultas Ilmu Komputer

Slide 3.2

© The McGraw-Hill Companies, 2005

Object-Oriented and

Classical Software

Engineering

Sixth Edition, WCB/McGraw-Hill, 2005

Stephen R. Schach
srs@vuse.vanderbilt.edu

Slide 3.3

© The McGraw-Hill Companies, 2005

CHAPTER 3

SOFTWARE

LIFE-CYCLE

MODELS

Slide 3.4

© The McGraw-Hill Companies, 2005

Overview

 The Unified Process

 Iteration and incrementation within the object-

oriented paradigm

 The requirements workflow

 The analysis workflow

 The design workflow

 The implementation workflow

 The test workflow

Slide 3.5

© The McGraw-Hill Companies, 2005

Overview (contd)

 Postdelivery maintenance

 Retirement

 The phases of the Unified Process

 One- versus two-dimensional life-cycle models

 Improving the software process

 Capability maturity models

 Other software process improvement initiatives

 Costs and benefits of software process

improvement

Slide 3.6

© The McGraw-Hill Companies, 2005

3.1 The Unified Process

 Until recently, three of the most successful object-

oriented methodologies were

Booch’s method

Jacobson’s Objectory

Rumbaugh’s OMT

Slide 3.7

© The McGraw-Hill Companies, 2005

The Unified Process (contd)

 In 1999, Booch, Jacobson, and Rumbaugh

published a complete object-oriented analysis and

design methodology that unified their three

separate methodologies

Original name: Rational Unified Process (RUP)

Next name: Unified Software Development Process

(USDP)

Name used today: Unified Process (for brevity)

Slide 3.8

© The McGraw-Hill Companies, 2005

The Unified Process (contd)

 The Unified Process is not a series of steps for

constructing a software product

No such single “one size fits all” methodology could

exist

There is a wide variety of different types of software

 The Unified Process is an adaptable methodology

It has to be modified for the specific software product to

be developed

Slide 3.9

© The McGraw-Hill Companies, 2005

The Unified Process (contd)

 UML is graphical

A picture is worth a thousand words

 UML diagrams enable software engineers to

communicate quickly and accurately

Slide 3.10

© The McGraw-Hill Companies, 2005

3.2 Iteration and Incrementation within the Object-Oriented Paradigm

 The Unified Process is a modeling technique

A model is a set of UML diagrams that represent various

aspects of the software product we want to develop

 UML stands for unified modeling language

UML is the tool that we use to represent (model) the

target software product

Slide 3.11

© The McGraw-Hill Companies, 2005

Iteration and Incrementation within the Object-Oriented Paradigm (contd)

 The object-oriented paradigm is iterative and

incremental in nature

There is no alternative to repeated iteration and

incrementation until the UML diagrams are satisfactory

Slide 3.12

© The McGraw-Hill Companies, 2005

Iteration and Incrementation within the Object-Oriented Paradigm (contd)

 The version of the Unified Process in this book is

for

Software products small enough to be developed by a

team of three students during the semester or quarter

 However, the modifications to the Unified Process

for developing a large software product are also

discussed

Slide 3.13

© The McGraw-Hill Companies, 2005

Iteration and Incrementation within the Object-Oriented Paradigm (contd)

 The goals of this book include:

A thorough understanding of how to develop smaller

software products

An appreciation of the issues that need to be addressed

when larger software products are constructed

 We cannot learn the complete Unified Process in

one semester or quarter

Extensive study and unending practice are needed

The Unified Process has too many features

A case study of a large-scale software product is huge

Slide 3.14

© The McGraw-Hill Companies, 2005

Iteration and Incrementation within the Object-Oriented Paradigm (contd)

 In this book, we therefore cover much, but not all,

of the Unified Process

The topics covered are adequate for smaller products

 To work on larger software products, experience is

needed

This must be followed by training in the more complex

aspects of the Unified Process

Slide 3.15

© The McGraw-Hill Companies, 2005

3.3 The Requirements Workflow

 The aim of the requirements workflow

To determine the client’s needs

Slide 3.16

© The McGraw-Hill Companies, 2005

Overview of the Requirements Workflow

 First, gain an understanding of the application

domain (or domain, for short)

That is, the specific business environment in which the

software product is to operate

 Second, build a business model

Use UML to describe the client’s business processes

If at any time the client does not feel that the cost is

justified, development terminates immediately

Slide 3.17

© The McGraw-Hill Companies, 2005

Overview of the Requirements Workflow (contd)

 It is vital to determine the client’s constraints

Deadline

 Nowadays software products are often mission critical

Parallel running

Portability

Reliability

Rapid response time

Cost

 The client will rarely inform the developer how much money is

available

 A bidding procedure is used instead

Slide 3.18

© The McGraw-Hill Companies, 2005

Overview of the Requirements Workflow (contd)

 The aim of this concept exploration is to determine

What the client needs, and

Not what the client wants

Slide 3.19

© The McGraw-Hill Companies, 2005

3.4 The Analysis Workflow

 The aim of the analysis workflow

To analyze and refine the requirements

 Why not do this during the requirements workflow?

The requirements artifacts must be totally

comprehensible by the client

 The artifacts of the requirements workflow must

therefore be expressed in a natural (human)

language

All natural languages are imprecise

Slide 3.20

© The McGraw-Hill Companies, 2005

The Analysis Workflow (contd)

 Example from a manufacturing information

system:

“A part record and a plant record are read from the

database. If it contains the letter A directly followed by

the letter Q, then calculate the cost of transporting that

part to that plant”

 To what does it refer?

The part record?

The plant record?

Or the database?

Slide 3.21

© The McGraw-Hill Companies, 2005

The Analysis Workflow (contd)

 Two separate workflows are needed

The requirements artifacts must be expressed in the

language of the client

The analysis artifacts must be precise, and complete

enough for the designers

Slide 3.22

© The McGraw-Hill Companies, 2005

The Specification Document (contd)

 Specification document (“specifications”)

Constitutes a contract

It must not have imprecise phrases like “optimal,” or

“98 percent complete”

 Having complete and correct specifications is

essential for

Testing, and

Maintenance

Slide 3.23

© The McGraw-Hill Companies, 2005

The Specification Document (contd)

 The specification document must not have

Contradictions

Omissions

Incompleteness

Slide 3.24

© The McGraw-Hill Companies, 2005

Software Project Management Plan

 Once the client has signed off the specifications,

detailed planning and estimating begins

 We draw up the software project management

plan, including

Cost estimate

Duration estimate

Deliverables

Milestones

Budget

 This is the earliest possible time for the SPMP

Slide 3.25

© The McGraw-Hill Companies, 2005

3.5 The Design Workflow

 The aim of the design workflow is to refine the

analysis workflow until the material is in a form

that can be implemented by the programmers

Many nonfunctional requirements need to be finalized at

this time, including

 Choice of programming language

 Reuse issues

 Portability issues

Slide 3.26

© The McGraw-Hill Companies, 2005

Classical Design

 Architectural design

Decompose the product into modules

 Detailed design

Design each module:

 Data structures

 Algorithms

Slide 3.27

© The McGraw-Hill Companies, 2005

Object-Oriented Design

 Classes are extracted during the object-oriented

analysis workflow, and

Designed during the design workflow

 Accordingly

Classical architectural design corresponds to part of the

object-oriented analysis workflow

Classical detailed design corresponds to part of the

object-oriented design workflow

Slide 3.28

© The McGraw-Hill Companies, 2005

The Design Workflow (contd)

 Retain design decisions

For when a dead-end is reached, and

To prevent the maintenance team reinventing the wheel

Slide 3.29

© The McGraw-Hill Companies, 2005

3.6 The Implementation Workflow

 The aim of the implementation workflow is to

implement the target software product in the

selected implementation language

A large software product is partitioned into subsystems

The subsystems consist of components or code

artifacts

Slide 3.30

© The McGraw-Hill Companies, 2005

3.7 The Test Workflow

 The test workflow is the responsibility of

Every developer and maintainer, and

The quality assurance group

 Traceability of artifacts is an important requirement

for successful testing

Slide 3.31

© The McGraw-Hill Companies, 2005

3.7.1 Requirements Artifacts

 Every item in the analysis artifacts must be

traceable to an item in the requirements artifacts

Similarly for the design and implementation artifacts

Slide 3.32

© The McGraw-Hill Companies, 2005

3.7.2 Analysis Artifacts

 The analysis artifacts should be checked by

means of a review

Representatives of the client and analysis team must be

present

 The SPMP must be similarly checked

Pay special attention to the cost and duration estimates

Slide 3.33

© The McGraw-Hill Companies, 2005

3.7.3 Design Artifacts

 Design reviews are essential

A client representative is not usually present

Slide 3.34

© The McGraw-Hill Companies, 2005

3.7.4 Implementation Artifacts

 Each component is tested as soon as it has been

implemented

Unit testing

 At the end of each iteration, the completed

components are combined and tested

Integration testing

 When the product appears to be complete, it is

tested as a whole

Product testing

 Once the completed product has been installed on

the client’s computer, the client tests it

Acceptance testing

Slide 3.35

© The McGraw-Hill Companies, 2005

Implementation Artifacts (contd)

 COTS software is released for testing by

prospective clients

Alpha release

Beta release

 There are advantages and disadvantages to being

an alpha or beta release site

Slide 3.36

© The McGraw-Hill Companies, 2005

3.8 Postdelivery Maintenance

 Postdelivery maintenance is an essential

component of software development

More money is spent on postdelivery maintenance than

on all other activities combined

 Problems can be caused by

Lack of documentation of all kinds

Slide 3.37

© The McGraw-Hill Companies, 2005

Postdelivery Maintenance (contd)

 Two types of testing are needed

Testing the changes made during postdelivery

maintenance

Regression testing

 All previous test cases (and their expected

outcomes) need to be retained

Slide 3.38

© The McGraw-Hill Companies, 2005

3.9 Retirement

 Software is can be unmaintainable because

A drastic change in design has occurred

The product must be implemented on a totally new

hardware/operating system

Documentation is missing or inaccurate

Hardware is to be changed—it may be cheaper to

rewrite the software from scratch than to modify it

 These are instances of maintenance (rewriting of

existing software)

Slide 3.39

© The McGraw-Hill Companies, 2005

Retirement (contd)

 True retirement is a rare event

 It occurs when the client organization no longer

needs the functionality provided by the product

Slide 3.40

© The McGraw-Hill Companies, 2005

3.10 The Phases of the Unified Process

 The increments are identified as phases

Figure 3.1

Slide 3.41

© The McGraw-Hill Companies, 2005

The Phases of the Unified Process (contd)

 The four increments are labeled

Inception phase

Elaboration phase

Construction phase

Transition phase

 The phases of the Unified Process are the

increments

Slide 3.42

© The McGraw-Hill Companies, 2005

The Phases of the Unified Process (contd)

 In theory, there could be any number of

increments

In practice, development seems to consist of four

increments

 Every step performed in the Unified Process falls

into

One of the five core workflows and also

One of the four phases

 Why does each step have to be considered twice?

Slide 3.43

© The McGraw-Hill Companies, 2005

The Phases of the Unified Process (contd)

 Workflow

Technical context of a step

 Phase

Business context of a step

Slide 3.44

© The McGraw-Hill Companies, 2005

3.10.1 The Inception Phase

 The aim of the inception phase is to determine

whether the proposed software product is

economically viable

Slide 3.45

© The McGraw-Hill Companies, 2005

The Inception Phase (contd)

 1. Gain an understanding of the domain

 2. Build the business model

 3. Delimit the scope of the proposed project

Focus on the subset of the business model that is

covered by the proposed software product

 4. Begin to make the initial business case

Slide 3.46

© The McGraw-Hill Companies, 2005

The Inception Phase : The Initial Business Case

 Questions that need to be answered include:

Is the proposed software product cost effective?

How long will it take to obtain a return on investment?

Alternatively, what will be the cost if the company decides

not to develop the proposed software product?

If the software product is to be sold in the marketplace, have

the necessary marketing studies been performed?

Can the proposed software product be delivered in time?

If the software product is to be developed to support the

client organization’s own activities, what will be the impact if

the proposed software product is delivered late?

Slide 3.47

© The McGraw-Hill Companies, 2005

The Inception Phase: The Initial Business Case

 What are the risks involved in developing the

software product, and

 How can these risks be mitigated?

Does the team who will develop the proposed software

product have the necessary experience?

Is new hardware needed for this software product?

If so, is there a risk that it will not be delivered in time?

If so, is there a way to mitigate that risk, perhaps by

ordering back-up hardware from another supplier?

Are software tools (Chapter 5) needed?

Are they currently available?

Do they have all the necessary functionality?

Slide 3.48

© The McGraw-Hill Companies, 2005

The Inception Phase: The Initial Business Case

 Answers are needed by the end of the inception

phase so that the initial business case can be

made

Slide 3.49

© The McGraw-Hill Companies, 2005

The Inception Phase: Risks

 There are three major risk categories:

Technical risks

 See earlier slide

The risk of not getting the requirements right

 Mitigated by performing the requirements workflow correctly

The risk of not getting the architecture right

 The architecture may not be sufficiently robust

Slide 3.50

© The McGraw-Hill Companies, 2005

The Inception Phase: Risks

 To mitigate all three classes of risks

The risks need to be ranked so that the critical risks are

mitigated first

 This concludes the steps of the inception phase

that fall under the requirements workflow

Slide 3.51

© The McGraw-Hill Companies, 2005

The Inception Phase: Analysis, Design Workflows

 A small amount of the analysis workflow may be

performed during the inception phase

Information needed for the design of the architecture is

extracted

 Accordingly, a small amount of the design

workflow may be performed, too

Slide 3.52

© The McGraw-Hill Companies, 2005

The Inception Phase: Implementation Workflow

 Coding is generally not performed during the

inception phase

 However, a proof-of-concept prototype is

sometimes build to test the feasibility of

constructing part of the software product

Slide 3.53

© The McGraw-Hill Companies, 2005

The Inception Phase: Test Workflow

 The test workflow commences almost at the start

of the inception phase

The aim is to ensure that the requirements have been

accurately determined

Slide 3.54

© The McGraw-Hill Companies, 2005

The Inception Phase: Planning

 There is insufficient information at the beginning of

the inception phase to plan the entire development

The only planning that is done at the start of the project

is the planning for the inception phase itself

 For the same reason, the only planning that can

be done at the end of the inception phase is the

plan for just the next phase, the elaboration phase

Slide 3.55

© The McGraw-Hill Companies, 2005

The Inception Phase: Documentation

 The deliverables of the inception phase include:

The initial version of the domain model

The initial version of the business model

The initial version of the requirements artifacts

A preliminary version of the analysis artifacts

A preliminary version of the architecture

The initial list of risks

The initial ordering of the use cases (Chapter 10)

The plan for the elaboration phase

The initial version of the business case

Slide 3.56

© The McGraw-Hill Companies, 2005

The Inception Phase: The Initial Business Case

 Obtaining the initial version of the business case is

the overall aim of the inception phase

 This initial version incorporates

A description of the scope of the software product

Financial details

If the proposed software product is to be marketed, the

business case will also include

 Revenue projections, market estimates, initial cost estimates

If the software product is to be used in-house, the

business case will include

 The initial cost–benefit analysis

Slide 3.57

© The McGraw-Hill Companies, 2005

3.10.2 Elaboration Phase

 The aim of the elaboration phase is to refine the

initial requirements

Refine the architecture

Monitor the risks and refine their priorities

Refine the business case

Produce the project management plan

 The major activities of the elaboration phase are

refinements or elaborations of the previous phase

Slide 3.58

© The McGraw-Hill Companies, 2005

The Tasks of the Elaboration Phase

 The tasks of the elaboration phase correspond to:

All but completing the requirements workflow

Performing virtually the entire analysis workflow

Starting the design of the architecture

Slide 3.59

© The McGraw-Hill Companies, 2005

The Elaboration Phase: Documentation

 The deliverables of the elaboration phase include:

The completed domain model

The completed business model

The completed requirements artifacts

The completed analysis artifacts

An updated version of the architecture

An updated list of risks

The project management plan (for the rest of the

project)

The completed business case

Slide 3.60

© The McGraw-Hill Companies, 2005

3.10.3 Construction Phase

 The aim of the construction phase is to produce

the first operational-quality version of the software

product

This is sometimes called the beta release

Slide 3.61

© The McGraw-Hill Companies, 2005

The Tasks of the Construction Phase

 The emphasis in this phase is on

Implementation, and

Testing

 Unit testing of modules

 Integration testing of subsystems

 Product testing of the overall system

Slide 3.62

© The McGraw-Hill Companies, 2005

The Construction Phase: Documentation

 The deliverables of the construction phase

include:

The initial user manual and other manuals, as

appropriate

All the artifacts (beta release versions)

The completed architecture

The updated risk list

The project management plan (for the remainder of the

project)

If necessary, the updated business case

Slide 3.63

© The McGraw-Hill Companies, 2005

3.10.4 The Transition Phase

 The aim of the transition phase is to ensure that

the client’s requirements have indeed been met

Faults in the software product are corrected

All the manuals are completed

Attempts are made to discover any previously

unidentified risks

 This phase is driven by feedback from the site(s)

at which the beta release has been installed

Slide 3.64

© The McGraw-Hill Companies, 2005

The Transition Phase: Documentation

 The deliverables of the transition phase include:

All the artifacts (final versions)

The completed manuals

Slide 3.65

© The McGraw-Hill Companies, 2005

3.11 One- and Two-Dimensional Life-Cycle Models

Figure 3.2

Slide 3.66

© The McGraw-Hill Companies, 2005

Why a Two-Dimensional Model?

 A traditional life cycle is a one-dimensional model

Represented by the single axis on the previous slide

 Example: Waterfall model

 The Unified Process is a two-dimensional model

Represented by the two axes on the previous slide

 The two-dimensional figure shows

The workflows (technical contexts), and

The phases (business contexts)

Slide 3.67

© The McGraw-Hill Companies, 2005

Why a Two-Dimensional Model? (contd)

 The waterfall model

 One-dimensional

Figure 2.3 (again)

Slide 3.68

© The McGraw-Hill Companies, 2005

Why a Two-Dimensional Model? (contd)

 Evolution tree model

 Two-dimensional

Figure 2.2 (again)

Slide 3.69

© The McGraw-Hill Companies, 2005

Why a Two-Dimensional Model? (contd)

 Are all the additional complications of the two-

dimensional model necessary?

 In an ideal world, each workflow would be

completed before the next workflow is started

Slide 3.70

© The McGraw-Hill Companies, 2005

Why a Two-Dimensional Model? (contd)

 In reality, the development task is too big for this

 As a consequence of Miller’s Law

The development task has to be divided into increments

(phases)

Within each increment, iteration is performed until the

task is complete

Slide 3.71

© The McGraw-Hill Companies, 2005

Why a Two-Dimensional Model? (contd)

 At the beginning of the process, there is not

enough information about the software product to

carry out the requirements workflow

Similarly for the other core workflows

 A software product has to be broken into

subsystems

 Even subsystems can be too large at times

Modules may be all that can be handled until a fuller

understanding of all the parts of the product as a whole

has been obtained

Slide 3.72

© The McGraw-Hill Companies, 2005

Why a Two-Dimensional Model? (contd)

 The Unified Process handles the inevitable

changes well

The moving target problem

The inevitable mistakes

 The Unified Process is the best solution found to

date for treating a large problem as a set of

smaller, largely independent subproblems

It provides a framework for incrementation and iteration

In the future, it will inevitably be superseded by some

better methodology

Slide 3.73

© The McGraw-Hill Companies, 2005

3.12 Improving the Software Process

 Example:

 U.S. Department of Defense initiative

 Software Engineering Institute (SEI)

 The fundamental problem with software

The software process is badly managed

Slide 3.74

© The McGraw-Hill Companies, 2005

Improving the Software Process (contd)

 Software process improvement initiatives

Capability maturity model (CMM)

ISO 9000-series

ISO/IEC 15504

Slide 3.75

© The McGraw-Hill Companies, 2005

3.13 Capability Maturity Models

 Not a life-cycle model

 Rather, a set of strategies for improving the
software process
SW–CMM for software

P–CMM for human resources (“people”)

SE–CMM for systems engineering

IPD–CMM for integrated product development

SA–for software acquisition

 These strategies are unified into CMMI (capability
maturity model integration)

Slide 3.76

© The McGraw-Hill Companies, 2005

SW–CMM

 A strategy for improving the software process

 Put forward in 1986 by the SEI

 Fundamental ideas:

Improving the software process leads to

 Improved software quality

 Delivery on time, within budget

Improved management leads to

 Improved techniques

Slide 3.77

© The McGraw-Hill Companies, 2005

SW–CMM (contd)

 Five levels of maturity are defined

Maturity is a measure of the goodness of the process

itself

 An organization advances stepwise from level to

level

Slide 3.78

© The McGraw-Hill Companies, 2005

Level 1. Initial Level

 Ad hoc approach

The entire process is unpredictable

Management consists of responses to crises

 Most organizations world-wide are at level 1

Slide 3.79

© The McGraw-Hill Companies, 2005

Level 2. Repeatable Level

 Basic software management

Management decisions should be made on the basis

of previous experience with similar products

Measurements (“metrics”) are made

These can be used for making cost and duration

predictions in the next project

Problems are identified, immediate corrective action

is taken

Slide 3.80

© The McGraw-Hill Companies, 2005

Level 3. Defined Level

 The software process is fully documented

Managerial and technical aspects are clearly defined

Continual efforts are made to improve quality and

productivity

Reviews are performed to improve software quality

CASE tools are applicable now (and not at levels 1 or 2)

Slide 3.81

© The McGraw-Hill Companies, 2005

Level 4. Managed Level

 Quality and productivity goals are set for each

project

Quality and productivity are continually monitored

Statistical quality controls are in place

Slide 3.82

© The McGraw-Hill Companies, 2005

Level 5. Optimizing Level

 Continuous process improvement

Statistical quality and process controls

Feedback of knowledge from each project to the next

Slide 3.83

© The McGraw-Hill Companies, 2005

Summary

Figure 3.3

Slide 3.84

© The McGraw-Hill Companies, 2005

Experiences with SW–CMM

 It takes:

3 to 5 years to get from level 1 to level 2

1.5 to 3 years from level 2 to level 3

SEI questionnaires highlight shortcomings, suggest

ways to improve the process

Slide 3.85

© The McGraw-Hill Companies, 2005

Key Process Areas

 There are key process areas (KPAs) for each

level

Slide 3.86

© The McGraw-Hill Companies, 2005

Key Process Areas (contd)

 Level-2 KPAs include:

Requirements management

Project planning

Project tracking

Configuration management

Quality assurance

 Compare

Level 2: Detection and correction of faults

Level 5: Prevention of faults

Slide 3.87

© The McGraw-Hill Companies, 2005

Goals

 Original goal:

Defense contracts would be awarded only to capable

firms

 The U.S. Air Force stipulated that every Air Force

contractor had to attain SW–CMM level 3 by 1998

DoD subsequently issued a similar directive

 The CMM has now gone far beyond the limited

goal of improving DoD software

Slide 3.88

© The McGraw-Hill Companies, 2005

3.14 Other Software Process Improvement Initiatives

 Other software process improvement (SPI)

initiatives include:

ISO 9000-series

ISO/IEC 15504

Slide 3.89

© The McGraw-Hill Companies, 2005

ISO 9000

 A set of five standards for industrial activities

ISO 9001 for quality systems

ISO 9000-3, guidelines to apply ISO 9001 to software

There is an overlap with CMM, but they are not identical

Not process improvement

There is a stress on documenting the process

There is an emphasis on measurement and metrics

ISO 9000 is required to do business with the EU

Also required by many U.S. businesses, including GE

More and more U.S. businesses are ISO 9000 certified

Slide 3.90

© The McGraw-Hill Companies, 2005

ISO/IEC 15504

 Original name: Software Process Improvement

Capability dEtermination (SPICE)

International process improvement initiative

Started by the British Ministry of Defence (MOD)

Includes process improvement, software procurement

Extends and improves CMM, ISO 9000

A framework, not a method

 CMM, ISO 9000 conform to this framework

Now referred to as ISO/IEC 15504

Or just 15504 for short

Slide 3.91

© The McGraw-Hill Companies, 2005

3.15 Costs and Benefits of Software Process Improvement

 Hughes Aircraft (Fullerton, CA) spent $500K

(1987–90)

Savings: $2M per year, moving from level 2 to level 3

 Raytheon moved from level 1 in 1988 to level 3 in

1993

Productivity doubled

Return of $7.70 per dollar invested in process

improvement

Slide 3.92

© The McGraw-Hill Companies, 2005

Costs and Benefits of Software Process Improvement (contd)

 Tata Consultancy Services (India) used ISO 9000

and CMM (1996–90)

Errors in estimation decreased from 50% to 15%

Effectiveness of reviews increased from 40% to 80%

 Motorola GED has used CMM (1992–97)

Results are shown in the next slide

Slide 3.93

© The McGraw-Hill Companies, 2005

Results of 34 Motorola Projects

 MEASL – Million equivalent assembler source lines

 Motorola does not reveal productivity data

Productivity is measured relative to that of a selected level-2 project

No fault or productivity data available for level-1 projects (by

definition)

Figure 3.4

Slide 3.94

© The McGraw-Hill Companies, 2005

Costs and Benefits of Software Process Improvement (contd)

 There is interplay between

Software engineering standards organizations, and

Software process improvement initiatives

 ISO/IEC 12207 (1995) is a full life-cycle software

standard

 In 1998, the U.S. version (IEEE/EIA 12207) was

published that incorporated ideas from CMM

 ISO 9000-3 now incorporates part of ISO/IEC

12207

