
CPL230-PENGEMBANGAN
PERANGKAT LUNAK

(PERTEMUAN-7)
Dosen Pengampu :

5165-Kundang K Juman
Prodi Teknik Informatika Fakultas Ilmu Komputer

Recall The Team Skills

1. Analyzing the Problem (with 5 steps)

2. Understanding User and Stakeholder Needs

3. Defining the System

4. Managing Scope

5. Refining the System Definition

1. Software Requirements: a more rigorous look

2. Refining the Use cases

3. Developing the Supplementary Specification

4. On Ambiguity and Specificity

5. Technical Methods for Specifying Requirements

6. Building the Right System

Chapter 21

Refining the Use Cases

 How Use Cases Evolve

 The Scope of a Use Case

 Dependency Relationships

 Extending Use Cases

 Including Use Cases

How Use Cases Evolve

 The test for enough use cases should be
the following:

 A complete collection of use cases should
describe

 all possible ways in which the system can be
used,

 at a level of specificity suitable to drive design,
implementation, and testing.

The Scope of a Use Case

 Consider the use of a recycling machine.

 The customer
 inserts cans and bottles into the recycling

machine,

 presses a button,

 and receives a printed receipt that can be
exchanged for money.

 Are there 3 uses cases?
 one use case to insert a deposit item,

 another use case to press the button,

 and another to acquire the receipt?

 Or is it just one use case?

The Scope of a Use Case

 Three actions occur, but one without the others is
of little value to the customer.

 The complete process is required to make sense to
the customer.

 Thus, the complete dialogue
 from inserting the first deposit item to pressing the

button to getting the receipt

is a complete instance of use, of one use case.

Review use case

 Review name

 Turn light on/off

 Control light

 Refining the description

 The resident initiates a change to the light the
room by pressing the on/off switch in the
room-lighting control panel.

 The use case prescribes the way in which lights
are turned on and off and also how they are
dimmed and brightened in accordance with
how long the user presses a light switch

Pre/Post condition

 Pre condition

 State of the system

 That the user can observe (observable state), not the
event that starts the use case

 The user has logged on to the system

 The user has opened the doc

 Post condition

 describes what the change in state of the system will be
after the use case completes.

 Post-conditions are guaranteed to be true when the use
case ends

 a cash withdraw will lead to an update of the account

Example: Automated Teller

Machine

Post Condition of Withdraw

 If the customer entered the PIN on the Card, and
the customer's balance was greater or equal to
the requested amount, then the customer got the
requested amount and the amount was deducted
from the balance.

 If the customer entered the wrong PIN three
times, the card was retained.

 If the customer requested too much money, the
card was returned to the customer.

 Control light use case

 Pre-conditions

 The selected On/Off/Dim button must be Dim
Enabled

 The selected On/Off/Dim button must be
preprogrammed to control a Light Bank

 Post-conditions

 On leaving this use case, the system remembers the
current brightness level of the selected On/Off/Dim
button.

Dependency Relationships

between Use Cases

 Extend relationship defines
that instances of a use case
that may be augmented by
some additional behaviour in
an extended use case.

 Include relationship is a
directed relationship
between use cases, implying
that the behaviour in the
additional use case is
inserted into the behaviour
of the base use case.

Extending Use Cases

 Systems evolve over time and additional
features and functionality are added.

 A use case may be extended to have more
actions in certain conditions.

 If some HOLIS systems included an optional
“light bar” indicator on the control switch.

Control
light Update

Display
Indicate

Extending Use Cases

 Why use the extend concept at all?

1. It can simplify maintenance and allow us to
focus only on the extended functionality

2. Extension points for envisioned extensions
can be provided in the base use case,
which is an indication to future intent

3. The extended use case may represent
optional behavior as opposed to a new,
basic or alternative flow

A Base Use Case

with Extended Flow

 In order to apply the extend construct, all that is
required is to indicate the extension points in the
basic flow and the conditions under which the
extended flow is to be executed.

Including Use Cases in

Other Use Cases

 Certain patterns of user and system
behavior reoccur in a variety of places

 e.g., entering passwords, performing a
system status check, selecting items from
a table, etc.

 To avoid redundancy, the include
relationship can be used.

 When used properly, the include
relationship can simplify the development
and maintenance activities.

The Flow of

an Included Use Case

Key Points

 To support development and testing activities,
the use cases defined earlier in the project must
be more fully elaborated.

 The use-case model is reviewed and will often be
refactored as well.

 A well-elaborated use case also defines all
alternative flows, pre- and post-conditions, and
special requirements.

 The additional use-case relationships extend and
include help the team structure and maintain the
use-case model.

Reading Assignment

 Read HOLIS case study in pages 245-251.

