
CPL230-PENGEMBANGAN
PERANGKAT LUNAK

(PERTEMUAN-8)
Dosen Pengampu :

5165-Kundang K Juman
Prodi Teknik Informatika Fakultas Ilmu Komputer

Interaction Diagram Notation

From Chapter 15 of

Craig Larman, Applying UML and Patterns

John Dalesandro

Objectives

• Read basic UML Interaction (Communication

and Sequence) Diagram notation

Decomposition Tools

• Different styles of software development are often

characterized by a strong reliance on a particular modeling

tool during the design phase.

• Relational Database designers tend to depend heavily on

Entity Relationship Diagrams.

• Functional/Procedural designers may use a tool like

Function Decomposition Diagrams.

• eXtreme Programming designers often use Class

Responsibility Collaboration Cards.

Object-Oriented Decomposition

• The modeling genre of choice for most object-oriented

designers is the Unified Modeling Language.

• The most important activity in object-oriented design is

assigning responsibility to objects.

• The preferred tool to assist object-oriented designers in

assigning responsibility to objects are the two UML

interaction diagrams.

Introduction

• Why do objects exist?
– To perform an activity to help fulfill a system’s purpose

• Interaction Diagrams are used to model
system dynamics
– How do objects change state?

– How do objects interact (message passing)?

Communication & Sequence

Diagrams

• An Interaction Diagram is a generalization of

two specialized UML diagram types

– Communication Diagrams: Illustrate object interactions

organized around the objects and their links to each

other

– Sequence Diagrams: Illustrate object interactions

arranged in time sequence

Communication & Sequence

Diagrams (2)

• Both diagram types are semantically equivalent, however,

they may not show the same information

– Communication Diagrams emphasize the structural

organization of objects, while Sequence Diagrams emphasize

the time ordering of messages

– Communication Diagrams explicitly show object linkages,

while links are implied in Sequence Diagrams

Interaction Diagrams Are

Valuable

• Interaction Diagrams provide a thoughtful,

cohesive, common starting point for

inspiration during programming

• Patterns, principles, and idioms can be

applied to improve the quality of the

Interaction Diagrams

Common Interaction Diagram

Notation

class instance named instance

:Sale s1:SaleSale

Communication Diagrams

• Objects are connected with numbered (sequenced)
arrows along links to depict information flow

• Arrows are drawn from the interaction source

• The object pointed to by the arrow is referred to as
the target

• Arrows are numbered to depict their usage order
within the scenario

• Arrows are labeled with the passed message

Example Communication

Diagram

:ClassAInstance

:ClassBInstance

1
:
m

e
s
s
a
g
e
1
()

2
:
m

e
s
s
a
g
e
2
()

message1()

Example Communication

Diagram: makePayment

:Register :Sale

:Payment

direction of message

first message

creation indicated with a "create" message

first internal message

parameter instance link line

makePayment(cashTendered:<unspecified>) 1: makePayment(cashTendered:<unspecified>)

1
.1

:
 c

re
a

te
:
(c

a
s
h

T
e

n
d

e
re

d
:<

u
n

s
p

e
c
if
ie

d
>

)

Basic Communication Diagram

Notation

• Link - connection path between two objects

(an instance of an association)

• Message - represented with a message

expression on an arrowed line between

objects

• Sequence Number - represents the order in

which the flows are used

Basic Communication Diagram

Notation (2)

• Conditional Message

– Seq. Number [variable = value] : message()

– Message is sent only if clause evaluates to true

• Iteration (Looping)

– Seq. Number * [i := 1..N]: message()

– “*” is required; [...] clause is optional

Communication Diagram from

AgileModeling.com

Sequence Diagrams

• Correspond to one scenario within a Use Case

• Model a single operation within a System over time

• Identify the objects involved with each scenario

• Identify the passed messages and actions that occur

during a scenario

• Identify the required response of each action

Example Sequence Diagram

:ClassAInstance :ClassBInstance

message1()

message2()

message1()

Example Sequence

Diagram: make Payment

:Register :Sale

:Payment

an activation box showing the focus of control

makePayment(cashTendered:<unspecified>)

create(cashTendered:<unspecified>)

makePayment(cashTendered:<unspecified>)

X

Basic Sequence Diagram

Notation

• Links - Sequence Diagrams do not show links

• Message - represented with a message

expression on an arrowed line between

objects

Basic Sequence Diagram

Notation (2)

• Object Lifeline - the vertical dashed line

underneath an object

– Objects do not have a lifeline until they are created

– The end of an object’s life is marked with an “X” at the

end of the lifeline

– Passage of time is from top to bottom of diagram

Basic Sequence Diagram

Notation (3)

• Activation - the period of time an object is

handling a message (box along lifeline)

– Activation boxes can be overlaid to depict an object

invoking another method on itself

Basic Sequence Diagram

Notation (4)

• Conditional Message

– [variable = value] message()

– Message is sent only if clause evaluates to true

• Iteration (Looping)

– * [i := 1..N]: message()

– “*” is required; [...] clause is optional

Sequence Diagram from

AgileModeling.com

Sequence Diagramming with

Ideogramic Modeling Tool

Sequence Diagram for Java Remote Method

Invocation
http://nathanbalon.net/projects/cis578/cis578_middleware_repor

t.pdf

Interaction Diagram Strengths

• Communication Diagram
– Space Economical - flexibility to add new objects in two

dimensions

– Better to illustrate complex branching, iteration, and
concurrent behavior

• Sequence Diagram
– Clearly shows sequence or time ordering of messages

– Simple notation

Interaction Diagram Weaknesses

• Communication Diagram

– Difficult to see sequence of messages

– More complex notation

• Sequence Diagram

– Forced to extend to the right when adding new objects;

consumes horizontal space

Conclusions

• Beginners in UML often emphasize Class

Diagrams. Interaction Diagrams usually

deserve more attention.

• There is no rule about which diagram to use.

Both are often used to emphasize the

flexibility in choice and to reinforce the logic

of the operation. Some tools can convert one

to the other automatically.

