
Po
w

er
ed

 B
y

A
TC

The New Kids on the Data Block

Po
w

er
ed

 B
y

A
TC

What does it stand for?:

Representational State Transfer

What Is it?

A style of software architecture for
distributed systems

Who/Where/When?

Came about in 2000 doctoral dissertation
of Roy Fielding – but it’s been used for
much longer

Po
w

er
ed

 B
y

A
TC

Resources:
Data, files,
methods

Where:
URL

based

How:
HTTP

What:
Up to
you

Po
w

er
ed

 B
y

A
TC

Premise:

Data in a table could be a resource we want to
read

Database server called bbddb01

Database called northwind

Table called users

http://bbddb01/northwind/users

Po
w

er
ed

 B
y

A
TC

What type of content you return is up to
you.

Compare to SOAP where you must return
XML.

Most common are XML or JSON. You could
return complex types like a picture.

Po
w

er
ed

 B
y

A
TC

Web sites are RESTful

RSS is RESTful

Twitter, Flickr and Amazon expose data
using REST

Some things are “accidentally RESTful” in
that they offer limited support.

Po
w

er
ed

 B
y

A
TC

Resource: Photos

Where:
 http://farm{farm-id}.static.flickr.com/{server-

id}/{id}_{secret}.jpg

 http://farm{farm-id}.static.flickr.com/{server-
id}/{id}_{secret}_[mstb].jpg

 http://farm{farm-id}.static.flickr.com/{server-id}/{id}_{o-
secret}_o.(jpg|gif|png)

What: JPEG, GIF or PNG (defined in the URL)

http://farm1.static.flickr.com/2/1418878_1
e92283336_m.jpg

Po
w

er
ed

 B
y

A
TC

REST CRUD (Create, Read, Update, Delete)

POST Create

GET Read

PUT Update or Create

DELETE Delete

HTTP Methods are a key corner stone in REST.
They define the action to be taken with a URL.
Proper RESTful services expose all four – “accidental”
expose less.
Nothing stopping you doing some Mix & Match
Some URL’s offering all of them and others a limited set

What are the four methods and what should they do?

Po
w

er
ed

 B
y

A
TC

http://bbddb01/northwind/users[firstname=“rob%”]

+ POST = Error

+ GET = Returns everyone who begins with rob

+ PUT = Error

+ DELETE = Deletes everyone who begins with rob

http://bbddb01/northwind/users

& we add some input data

+ POST = Creates a new user

+ GET = Returns everyone who meets criteria

+ PUT = Creates/Updates a user (based on data)

+ DELETE = Deletes everyone who meets criteria

Po
w

er
ed

 B
y

A
TC

http://bbddb01/northwind/users[firstname=“rob%”]

+ POST = Error

+ PUT = Error

What would the error be?

HTTP 400 or 500 errors are normally used to indicate
problems – same as websites

Po
w

er
ed

 B
y

A
TC

You can associate commands with a resource.

Commands can replace the need for using HTTP
methods and can provide a more familiar way of
dealing with data.

Example:
userResource = new Resource('http://example.com/users/001')
userResource.delete()

Po
w

er
ed

 B
y

A
TC

Comparing apples and oranges

Po
w

er
ed

 B
y

A
TC

REST SOAP

A STYLE A Standard

Proper REST: Transport must be
HTTP/HTTPS

Normally transport is HTTP/HTTPS but
can be something else

Response data is normally transmitted
as XML, can be something else.
On average the lighter of the two as
does not have SOAP header overhead

Response data is transmitted as XML

Request is transmitted as URI
Exceptionally light compared to web
services
Limit on how long it can be
Can use input fields

Request is transmitted as XML

Analysis of method and URI indicate
intent

Must analyse message payload to
understand intent

… WS* initiatives to improve problems
like compression or security

Po
w

er
ed

 B
y

A
TC

REST SOAP

Easy to be called from JavaScript JavaScript can call SOAP but it is hard,
and not very elegant.

If JSON is returned it is very powerful
(keep this in mind)

JavaScript parsing XML is slow and
the methods differ from browser to
browser.

C# (Visual Studio) parsing of REST
means using HttpWebRequest and
parsing the results (string/xml) or
normal service consumption (.NET 3.5
SP 1 and later).

C# (Visual Studio) makes consuming
SOAP very easy and provides nice
object models to work with.

C# version 4 should make this easier
thanks to new dynamic methods.

...

There are 3rd party add-on’s for
parsing JSON with C# so that may
make it easier.

...

Po
w

er
ed

 B
y

A
TC

REST SOAP

Basic support for REST in BizTalk BizTalk and SOAP are made to be
together.

WCF can consume REST. WCF can consume SOAP.

WCF can serve REST with a bit of
tweaking.

WCF can server SOAP.

The new routing feature in ASP.NET
3.5 SP1 makes building a RESTful
service easy.

...

Po
w

er
ed

 B
y

A
TC

Are RESTful services secure?

It’s a style, not a technology so that
depends on how you implement it.

Are you open to SQL injection attacks?
When you look at

http://bbddb01/northwind/users*firstname=“rob%”+,
you may think so but you shouldn’t be. Because:

1) The parameter shouldn’t be SQL

2) If it is SQL, why are you not filtering it?

3) Remember the old rule: Do not trust user input

Po
w

er
ed

 B
y

A
TC

How can I do authentication?

It’s built on HTTP, so everything you have for
authentication in HTTP is available

PLUS

You could encode your authentication
requirements into the input fields

Po
w

er
ed

 B
y

A
TC

“JSON (JavaScript Object Notation) is a lightweight data-
interchange format. It is easy for humans to read and
write. It is easy for machines to parse and generate” –
JSON.org

Importantly: JSON is a subset of JavaScript

Po
w

er
ed

 B
y

A
TC

{

"firstName": "John",

"lastName": "Smith",

"address": {

"streetAddress": "21 2nd Street",

"city": "New York",

"state": "NY",

"postalCode": 10021

},

"phoneNumbers": [

"212 555-1234",

"646 555-4567"

]

}

Name/Value Pairs

Number data
type

String Array

Child
properties

livecall:555-1234
livecall:555-1234
livecall:555-1234
livecall:555-4567
livecall:555-4567
livecall:555-4567

Po
w

er
ed

 B
y

A
TC

Po
w

er
ed

 B
y

A
TC

Demo

Po
w

er
ed

 B
y

A
TC

Aren’t they the same?

Po
w

er
ed

 B
y

A
TC

JSON XML

Data Structure Data Structure

No validation system XSD

No namespaces Has namespaces (can use multiples)

Parsing is just an eval
•Fast
•Security issues

Parsing requires XML document
parsing using things like XPath

In JavaScript you can work with
objects – runtime evaluation of types

In JavaScript you can work with strings
– may require additional parsing

Security: Eval() means that if the
source is not trusted anything could
be put into it.
Libraries exist to make parsing safe(r)

Security: XML is text/parsing – not
code execution.

Po
w

er
ed

 B
y

A
TC

Scenario 1: You have a website (say
Twitter.com) and you want to expose a
public API to build apps.

Issue JSON XML

The public will be
parsing data in.
You must make it
secure.

Run checks against the data in
the object to make sure it’s
secure. You are working on
objects so you must also check
for potential code access
issues.

Run checks against the
data to make sure it’s
secure.

Data must be in a
specific format.

Build something that parses
the objects.

XML Schema

Po
w

er
ed

 B
y

A
TC

Scenario 2: You have a website (say
gmail.com) and your front end needs to
show entries from a mailbox, but needs to
be dynamic and so you will use a lot of
JavaScript.

Issue JSON XML

Your in house
developers know
objects and
would like to use
them.

JSON is JavaScript objects. Write JavaScript to parse
the XML to objects.

The site is secure
but you worry
about people
checking the page
source.

You page has JavaScript in it
and (maybe) code which
communicates with a private
backend server. No major
issues.

You page has JavaScript in
it and (maybe) code which
communicates with a
private backend server. No
major issues.

Po
w

er
ed

 B
y

A
TC

Which of them should you use?

Use Both – They both have strengths and
weaknesses and you need to identify
when one is stronger than the other.

Po
w

er
ed

 B
y

A
TC

