
Microservice 

Architecture
Benefits vs. Monolithic Architecture



Monolithic Flow #1

I want to book a flight



Monolithic Flow #2

Here are the available flights



Monolithic Flow #3

I want to book one of those flights



Monolithic Flow #4

Would you like to hire a car?



Business Drawbacks

 One-way communication

 Customer is in control

 Website is idle when user is idle

 Limited window of opportunity to interact

 Reduced scope for ancillary revenue



Technical Drawbacks

 Results in dependencies

 Failure affects everything

 Change is slow

 Scale is expensive (minor features require unilateral scale)

 Steep learning curve

 Technology stack is limited to specific skillsets

 Introduces legal pitfalls (PCI DSS, Compliance)

 Duplicated components due to lack of explicit boundaries

 Rigid – likely to break under pressure



Microservice Flow #1

Car Hire

Hotel

Flight

Taxi

User Profile

Fare Finder

Flights

Other



Microservice Flow #2

Car Hire

Hotel

Flight

Taxi

User Profile

Fare Finder

Flights

Taxis

Other



Microservice Flow #3

Car Hire

Hotel

Flight

Taxi

User Profile

Fare Finder

Flights

Taxis

Cars

Other



Microservice Flow #4

Car Hire

Hotel

Flight

Taxi

User Profile

Fare Finder

Flights

Taxis

Cars

Hotels

Other



Enhanced Flow Step #5

Car Hire

Hotel

Flight

Taxi

User Profile

Fare Finder

Flights

Taxis

Cars

Fares

Hotels

Other



Business Benefits

 Two-way communication

 We’re in control (think Google)

 APIs are always working

 Unlimited opportunities to interact

 Broader scope for ancillary revenue



Technical Benefits

 Eliminates dependencies

 Failure is isolated

 React to change quicker

 Scale is less expensive (APIs scale individually)

 More intuitive learning curve

 Technology stack is not limited to specific skillsets

 Shielded from legal pitfalls

 Reusable components

 Flexible – will bend rather than break under pressure



Anatomy of a Microservice

 Decoupled Middleware design pattern

 Microservices communicate across a Service Bus (Kafka, RabbitMQ, NATS.io)

 Service Bus is centralised

 Microservices are distributed

 TCP communication is generally favoured

 Microservices do 1 thing only, and they do it very well

 Not restricted to a specific technology

 Facilitates Circuit Breaker, Bulkhead, and Handshaking design patterns

 Avoids cascading failure



Anatomy of a Microservice

Microservice Daemon

Message Dispatcher

Event Listener

Microservice Daemon

Event Listener

Message Dispatcher

Service Bus

Queue #1

Queue #2

Message Message

Message Message



References

 http://insidethecpu.com/2015/05/22/microservices-with-c-and-rabbitmq/

 http://martinfowler.com/articles/microservices.html

 http://microservices.io/

 http://cdn.oreillystatic.com/en/assets/1/event/79/Stability%20Patterns%20P

resentation.pdf

http://insidethecpu.com/2015/05/22/microservices-with-c-and-rabbitmq/
http://martinfowler.com/articles/microservices.html
http://microservices.io/
http://cdn.oreillystatic.com/en/assets/1/event/79/Stability Patterns Presentation.pdf


Questions

 How do we achieve Continuous Integration/Deployment?

 Monitoring sounds complicated

 Why now? Is there a reason this hasn’t been done up until now?

 Can we deploy segment-by-segment?

 Which brokers offer message-durability?

 How will this affect UI development? 

 How do we manage the extra overhead involved in multiple service calls?


