Microservice
Architecture

Benefits vs. Monolithic Architecture




Monolithic Flow #1

E | want to book a flight >
52




Monolithic Flow #2

E< Here are the available flights
L5



Monolithic Flow #3

E | want to book one of those flights————»
P--i- Y




Monolithic Flow #4

E4 Would you like to hire a car?
P--i- Y



Business Drawbacks

One-way communication
Customer is in control
Website is idle when user is idle

Limited window of opportunity to interact

vV v v v Vv

Reduced scope for ancillary revenue




Technical Drawbacks

Results in dependencies

Failure affects everything

Change is slow

Scale is expensive (minor features require unilateral scale)
Steep learning curve

Technology stack is limited to specific skillsets

Introduces legal pitfalls (PCI DSS, Compliance)

Duplicated components due to lack of explicit boundaries

vV vV vV vV vV v v v Y

Rigid - likely to break under pressure




Microservice Flow #1

I Flightsj € --------------mmommm oo
Taxi
ther

Flight




Microservice Flow #2




Microservice Flow #3




Microservice Flow #4




Enhanced Flow Step #5




Business Benefits

Two-way communication
We’re in control (think Google)
APIs are always working

Unlimited opportunities to interact

vV v v v Vv

Broader scope for ancillary revenue




Technical Benefits

Eliminates dependencies

Failure is isolated

React to change quicker

Scale is less expensive (APIs scale individually)
More intuitive learning curve

Technology stack is not limited to specific skillsets
Shielded from legal pitfalls

Reusable components

vV vV vV vV vV v v v Y

Flexible - will bend rather than break under pressure




Anatomy of a Microservice

Decoupled Middleware design pattern

Microservices communicate across a Service Bus (Kafka, RabbitMQ, NATS.i0)
Service Bus is centralised

Microservices are distributed

TCP communication is generally favoured

Microservices do 1 thing only, and they do it very well

Not restricted to a specific technology

Facilitates Circuit Breaker, Bulkhead, and Handshaking design patterns

vV vV vV vV vV v v v Y

Avoids cascading failure




1croservice

Anatomy of a M

Event Listener

—_—_————ee e e e —— 4

Queue #1
Queue #2
______SericeBus

—_————ee— e e — 4

Event Listener



References

http://insidethecpu.com/2015/05/22/microservices-with-c-and-rabbitmqg/

http://martinfowler.com/articles/microservices.html

http://microservices.io/

http://cdn.oreillystatic.com/en/assets/1/event/79/Stability%20Patterns%20P
resentation.pdf

vV v v Vv



http://insidethecpu.com/2015/05/22/microservices-with-c-and-rabbitmq/
http://martinfowler.com/articles/microservices.html
http://microservices.io/
http://cdn.oreillystatic.com/en/assets/1/event/79/Stability Patterns Presentation.pdf

Questions

How do we achieve Continuous Integration/Deployment?
Monitoring sounds complicated

Why now? Is there a reason this hasn’t been done up until now?
Can we deploy segment-by-segment?

Which brokers offer message-durability?

How will this affect Ul development?

vV v v v v v Vv

How do we manage the extra overhead involved in multiple service calls?




