
Microservice 

Architecture
Benefits vs. Monolithic Architecture



Monolithic Flow #1

I want to book a flight



Monolithic Flow #2

Here are the available flights



Monolithic Flow #3

I want to book one of those flights



Monolithic Flow #4

Would you like to hire a car?



Business Drawbacks

 One-way communication

 Customer is in control

 Website is idle when user is idle

 Limited window of opportunity to interact

 Reduced scope for ancillary revenue



Technical Drawbacks

 Results in dependencies

 Failure affects everything

 Change is slow

 Scale is expensive (minor features require unilateral scale)

 Steep learning curve

 Technology stack is limited to specific skillsets

 Introduces legal pitfalls (PCI DSS, Compliance)

 Duplicated components due to lack of explicit boundaries

 Rigid – likely to break under pressure



Microservice Flow #1

Car Hire

Hotel

Flight

Taxi

User Profile

Fare Finder

Flights

Other



Microservice Flow #2

Car Hire

Hotel

Flight

Taxi

User Profile

Fare Finder

Flights

Taxis

Other



Microservice Flow #3

Car Hire

Hotel

Flight

Taxi

User Profile

Fare Finder

Flights

Taxis

Cars

Other



Microservice Flow #4

Car Hire

Hotel

Flight

Taxi

User Profile

Fare Finder

Flights

Taxis

Cars

Hotels

Other



Enhanced Flow Step #5

Car Hire

Hotel

Flight

Taxi

User Profile

Fare Finder

Flights

Taxis

Cars

Fares

Hotels

Other



Business Benefits

 Two-way communication

 We’re in control (think Google)

 APIs are always working

 Unlimited opportunities to interact

 Broader scope for ancillary revenue



Technical Benefits

 Eliminates dependencies

 Failure is isolated

 React to change quicker

 Scale is less expensive (APIs scale individually)

 More intuitive learning curve

 Technology stack is not limited to specific skillsets

 Shielded from legal pitfalls

 Reusable components

 Flexible – will bend rather than break under pressure



Anatomy of a Microservice

 Decoupled Middleware design pattern

 Microservices communicate across a Service Bus (Kafka, RabbitMQ, NATS.io)

 Service Bus is centralised

 Microservices are distributed

 TCP communication is generally favoured

 Microservices do 1 thing only, and they do it very well

 Not restricted to a specific technology

 Facilitates Circuit Breaker, Bulkhead, and Handshaking design patterns

 Avoids cascading failure



Anatomy of a Microservice

Microservice Daemon

Message Dispatcher

Event Listener

Microservice Daemon

Event Listener

Message Dispatcher

Service Bus

Queue #1

Queue #2

Message Message

Message Message



References

 http://insidethecpu.com/2015/05/22/microservices-with-c-and-rabbitmq/

 http://martinfowler.com/articles/microservices.html

 http://microservices.io/

 http://cdn.oreillystatic.com/en/assets/1/event/79/Stability%20Patterns%20P

resentation.pdf

http://insidethecpu.com/2015/05/22/microservices-with-c-and-rabbitmq/
http://martinfowler.com/articles/microservices.html
http://microservices.io/
http://cdn.oreillystatic.com/en/assets/1/event/79/Stability Patterns Presentation.pdf


Questions

 How do we achieve Continuous Integration/Deployment?

 Monitoring sounds complicated

 Why now? Is there a reason this hasn’t been done up until now?

 Can we deploy segment-by-segment?

 Which brokers offer message-durability?

 How will this affect UI development? 

 How do we manage the extra overhead involved in multiple service calls?


