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Monolithic Flow #1

I want to book a flight



Monolithic Flow #2

Here are the available flights



Monolithic Flow #3

I want to book one of those flights



Monolithic Flow #4

Would you like to hire a car?



Business Drawbacks

 One-way communication

 Customer is in control

 Website is idle when user is idle

 Limited window of opportunity to interact

 Reduced scope for ancillary revenue



Technical Drawbacks

 Results in dependencies

 Failure affects everything

 Change is slow

 Scale is expensive (minor features require unilateral scale)

 Steep learning curve

 Technology stack is limited to specific skillsets

 Introduces legal pitfalls (PCI DSS, Compliance)

 Duplicated components due to lack of explicit boundaries

 Rigid – likely to break under pressure
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Microservice Flow #2
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Microservice Flow #3
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Microservice Flow #4
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Enhanced Flow Step #5
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Business Benefits

 Two-way communication

 We’re in control (think Google)

 APIs are always working

 Unlimited opportunities to interact

 Broader scope for ancillary revenue



Technical Benefits

 Eliminates dependencies

 Failure is isolated

 React to change quicker

 Scale is less expensive (APIs scale individually)

 More intuitive learning curve

 Technology stack is not limited to specific skillsets

 Shielded from legal pitfalls

 Reusable components

 Flexible – will bend rather than break under pressure



Anatomy of a Microservice

 Decoupled Middleware design pattern

 Microservices communicate across a Service Bus (Kafka, RabbitMQ, NATS.io)

 Service Bus is centralised

 Microservices are distributed

 TCP communication is generally favoured

 Microservices do 1 thing only, and they do it very well

 Not restricted to a specific technology

 Facilitates Circuit Breaker, Bulkhead, and Handshaking design patterns

 Avoids cascading failure



Anatomy of a Microservice
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Questions

 How do we achieve Continuous Integration/Deployment?

 Monitoring sounds complicated

 Why now? Is there a reason this hasn’t been done up until now?

 Can we deploy segment-by-segment?

 Which brokers offer message-durability?

 How will this affect UI development? 

 How do we manage the extra overhead involved in multiple service calls?


