The Modeling Processes

Indriani Noor H.

Prepared for CSP320 System Modeling Faculty of Computer Science Universitas Esa Unggul - 2018

References:

1. Sterman, John D. (2000). Business Dynamics: Systems Thinking and Modeling for a Complex World. McGraw-Hills. Chapter 3: The Modeling Processes.

Why Simulation is Essential

- Eliciting and mapping the participant's mental models, while necessary, is far from sufficient. Simulation is the only practical way to test these models.
- Without simulation, conceptual models can only be tested and improved by relying on the learning feedback through the real world.
 - This feedback is very slow and often rendered ineffective by dynamic complexity, time delays, inadequate and ambiguous feedback, poor reasoning skills, defensive reactions, and the costs of experimentation.
- In this circumstances, simulation becomes the only reliable way to test hypotheses and evaluate the likely effects of policies.

System Dynamics

- System Dynamics is an approach that should help in important top management problems.
- System Dynamics was born at MIT Sloan in the 1950s and developed by Prof. Emeritus Jay W. Forrester.
- System Dynamics helps us understand, design, and manage change.
- Using data and technology, System Dynamics models the relationships between all the parts of a system and how those relationships influence the behavior of the system over time.

The Purpose of Modeling: Managers as Organization Designers

• In the context of social and business systems, managers play two roles:

- they are pilots, making decisions
- they are designers, shaping the organizational structures, strategies, and decision rules that influence how decisions are made.
- Too many managers, especially senior managers, <u>spend far too much time acting as</u> <u>pilots</u> - making decisions, taking control from subordinates - <u>rather than creating an</u> <u>organizational structure consistent with their vision and values</u> and <u>which can be</u> <u>managed well by ordinary people</u>.
- Virtual worlds provide an important tool for managers in both the operation and especially the design of their organizations.

Selection of Problems

"The solution to small problems yield small rewards... The goal should be to find management policies and organizational structures that lead to greater success." — Forrester

• Focus modeling work on <u>the important issues</u>, on the problems where <u>your work can have lasting benefit</u>, on <u>the problems you</u> <u>care most deeply about</u>.

The Client and The Modeler

- The Client is
 - NOT the person who brings you in to an organization or champions your work
 - NOT the person who pays for the modeling study, though it is helpful to have contacts, champions, and cash.
- The Client
 - are those people whose behavior must change to solve the problem
 - can be a CEO or a machine operator on the factory floor.
 - can be individuals, groups, or entire communities.
 - can be your academic colleagues, the public at large, or even yourself.

The Client and The Modeler 2

- To be effective, the modeling process must be focused on the clients' needs.
- The clients for a modeling project are busy:
 - they are embroiled in organizational politics. They are looking out for their own careers. Their concern is solving a problem and taking action in the real world. They care little for the elegance of your theory or cleverness of your model.
- Modeling is done to help the client, not for the benefit of the modeler.
 - The client context and real world problem determine the nature of the model
 - The modeling process must be consistent with the client's skills, capabilities, and goals.
 - The purpose is to help the clients solve their problem.
 - If the clients perceive your model does not address their concerns or lose confidence in it, you will have little impact.
 - Focus your modeling work on the problems that keep the clients up at night.

The Client and The Modeler 3

- Modelers should not automatically accede to clients' requests to include more detail or to focus on one set of issues while ignoring others, just to keep the client on board.
- A good modeling process challenges the clients' conception of the problem.
- Modelers have responsibility to require their clients to justify their opinions, ground their views in data, and consider new viewpoints.
- When the clients ask you to do something you think is unnecessary or misguided, you must work with them to resolve the issue.

The Modeling Process

1. Problem Articulation (Boundary Selection)

- Theme Selection: What is the problem? why is it a problem?
- Key variables: What are the key variables and concepts we must consider?
- **Time horizon:** How far in the future should we consider? How far back in the past lie the roots of the problem?
- Dynamic problem definition (reference modes): What is the historical behavior of the key concepts and variables? What might their behavior in the future?

The Modeling Process 2. Formulation of Dynamic Hypothesis

- Initial hypothesis generation: What are current theories of the problematic behavior?
- Endogenous focus: Formulate a dynamic hypothesis that explains the dynamics as endogenous consequences of the feedback structure.
- Mapping: Develop maps of causal structure based on initial hypothesis, key variables, reference modes, and other available data, using tools such as
 - Model boundary diagrams
 - Subsystem diagrams
 - Causal loop diagrams
 - Stock and flow maps
 - Policy structure diagrams
 - Other facilitation tools

The Modeling Process 3. Formulation of a Simulation Model

- Specification of structure, decision rules.
- Estimation of parameters, behavioral relationships, and initial conditions.
- Tests for consistency with the purpose and boundary

The Modeling Process **4. Testing**

- Comparison to reference modes: Does the model reproduce the problem behavior adequately for your purpose?
- Robustness under extreme conditions: Does the model behave realistically when stressed by extreme conditions?
- Sensitivity: How does the model behave given uncertainty in parameters, initial conditions, model boundary, and aggregation?
- ... Many other tests

The Modeling Process
 5. Policy Design and Evaluation

- Scenario specification: What environmental conditions might arise?
- **Policy design:** What new decision rules, strategies, and structures might be tried in the real world? How can they be represented in the model?
- "What if..." analysis: What are the effects of the policies?
- Sensitivity analysis: How robust are the policy recommendations under different scenarios and given uncertainties?
- Interactions of policies: Do the policies interact? Are there synergies or compensatory responses?

End Slides.