Causal Loop Diagram

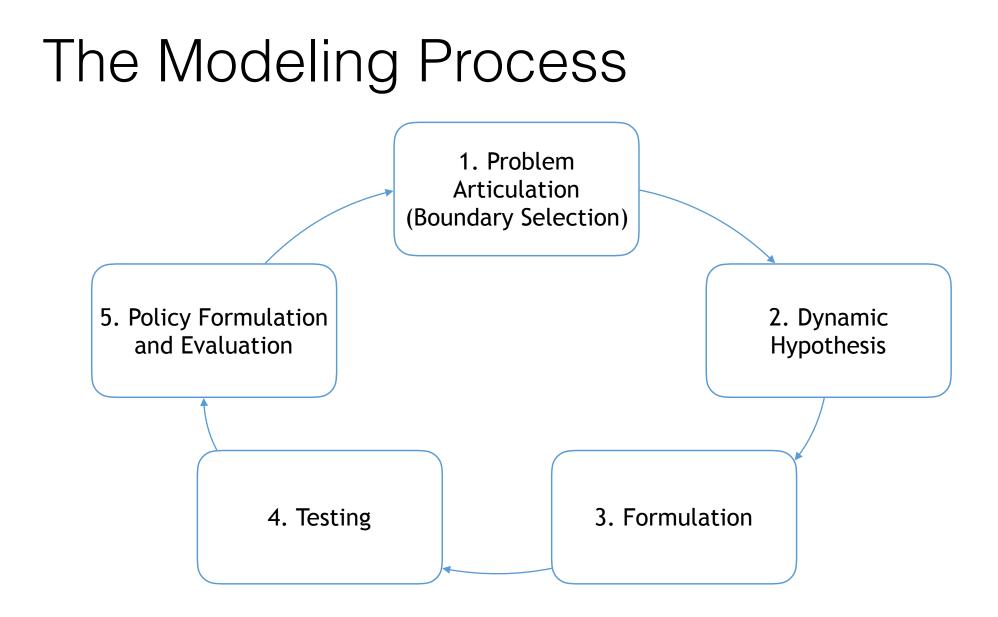
Indriani Noor H.

Prepared for CSP320 System Modeling Faculty of Computer Science Universitas Esa Unggul - 2018

References:

1. Sterman, John D. (2000). Business Dynamics: Systems Thinking and Modeling for a Complex World. McGraw-Hills. Chapter 3: The Modeling Processes.

Why Simulation is Essential


- Eliciting and mapping the participant's mental models, while necessary, is far from sufficient. Simulation is the only practical way to test these models.
- Without simulation, conceptual models can only be tested and improved by relying on the learning feedback through the real world.
 - This feedback is very slow and often rendered ineffective by dynamic complexity, time delays, inadequate and ambiguous feedback, poor reasoning skills, defensive reactions, and the costs of experimentation.
- In this circumstances, simulation becomes the only reliable way to test hypotheses and evaluate the likely effects of policies.

System Dynamics

- System Dynamics is an approach that should help in important top management problems.
- System Dynamics was born at MIT Sloan in the 1950s and developed by Prof. Emeritus Jay W. Forrester.
- System Dynamics helps us understand, design, and manage change.
- Using data and technology, System Dynamics models the relationships between all the parts of a system and how those relationships influence the behavior of the system over time.

What is System Dynamics?

- Computer simulation modeling for studying and managing complex feedback systems, such as business and other social systems
- System:
 - In general, a collection of interacting elements that function together for some purpose
 - Here, **feedback** is the differentiating descriptor
- Properties of dynamic problems
 - Contain quantities that vary over time
 - Variability can be described causally
 - Important causal influences can be contained within a closed system of feedback loops

System Dynamics Modeling

- Identify a problem
- Develop a dynamic hypothesis explaining the cause of the problem
- Create a basic structure of a causal graph
- Augment the causal graph with more information
- Convert the augmented causal graph to a System Dynamics flow graph
- Translate a System Dynamics flow graph into DYNAMO programs or equations

Critical Aspects

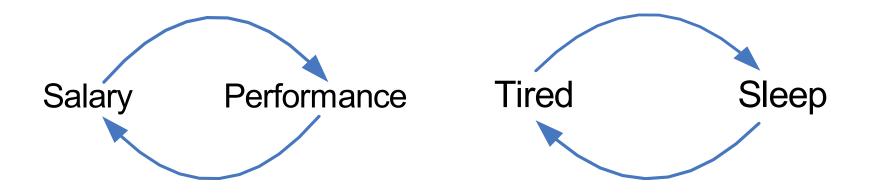
- Thinking in terms of cause-and-effect relationships
- Focusing on the feedback linkages among components of a system
- Determining the appropriate boundaries for defining what is to be included within a system

Understand Cause and Effect

- Causal thinking is the key to organizing ideas in a system dynamics study
- Instead of `cause', `affect' or `influence' can be used to describe the related components in the system
- Some are logical (e.g. physics)
 - Food intake → weight
 - Money \rightarrow happiness
 - Fire \rightarrow smoke
- Some are not (e.g. sociology, economics)
 - Use of seatbelts \rightarrow reduced highway fatalities
 - Shortened daylight hours \rightarrow increased suicide rates

Feedback

- Thinking in terms of "cause and effect" is not enough
 ocean → evaporation → cloud → rain → ocean → ...
- Feedback: an initial cause ripples through a chain of causation ultimately to re-affect itself
- Search to identify closed, causal feedback loops is one key element of System Dynamics
- The most important causal influences will be exactly those that are enclosed within feedback loop


Causal Loop Diagram (CLD)

- Represent the feedback structure of systems
- Capture
 - The hypotheses about the causes of dynamics
 - The important feedbacks

CLD Examples

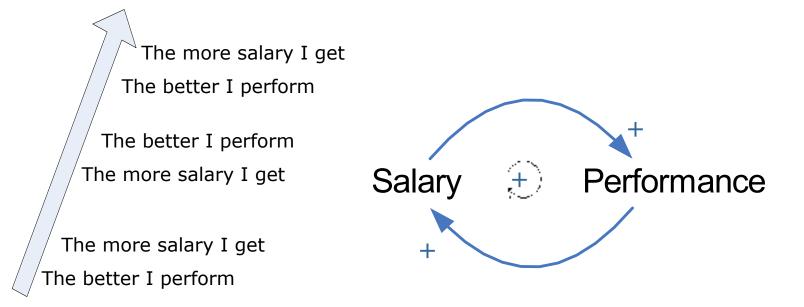
- Salary VS Performance
 - Salary \rightarrow Performance
 - Performance \rightarrow Salary

- Tired VS Sleep
 - Tired \rightarrow sleep
 - Sleep \rightarrow tired

Augmenting CLD 1 (Labeling Link Polarity)

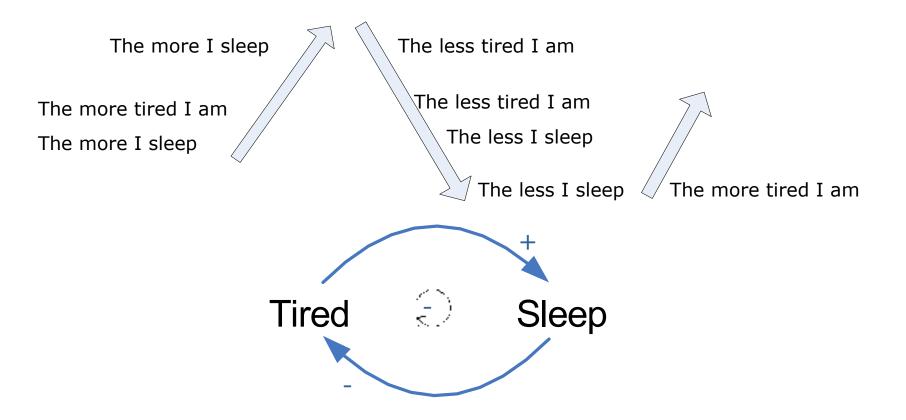
- Signing: Add a `+' or a `-' sign at each arrowhead to convey more information
- A `+' is used if the cause increase, the effect increases and if the cause decrease, the effect decreases
- A `-' is used if the cause increases, the effect decreases and if the cause decreases, the effect increases

Signing Arcs


Augmenting CLD 2 (Determining Loop Polarity)

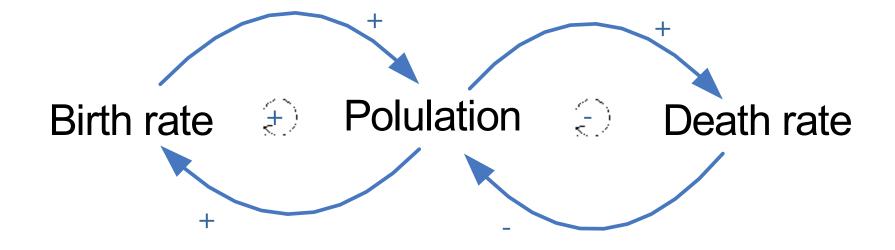
- Positive feedback loops
 Have an even number of `-' signs
 Some quantity increase, a "snowball" effect takes over and that quantity continues to increase
 The "snowball" effect can also work in reverse

 - Generate behaviors of growth, amplify, deviation, and
 - reinforce
 Notation: place
 symbol in the center of the loop
- Negative feedback loops
 Have an odd number of "-" signs
 Tend to produce "stable", "balance", "equilibrium" and "goal-seeking" behavior over time
 Notation: place symbol in the center of the loop

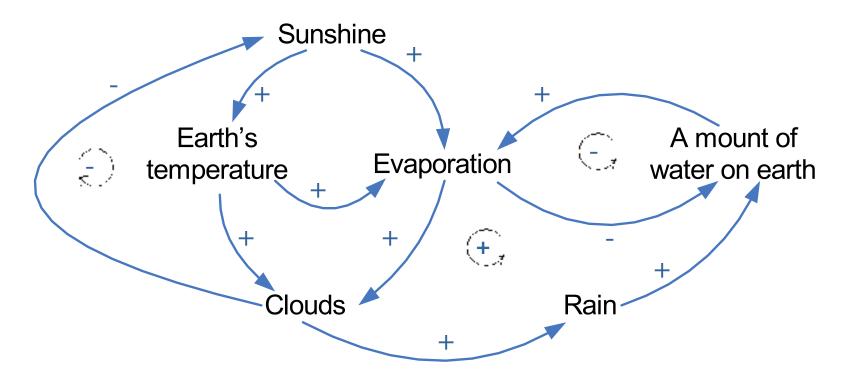

CLD with Positive Feedback Loop

□ Salary \rightarrow Performance, Performance \rightarrow Salary

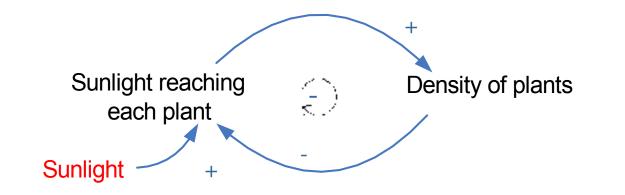
CLD with Negative Feedback Loop


□ Tired \rightarrow Sleep, Sleep \rightarrow Tired

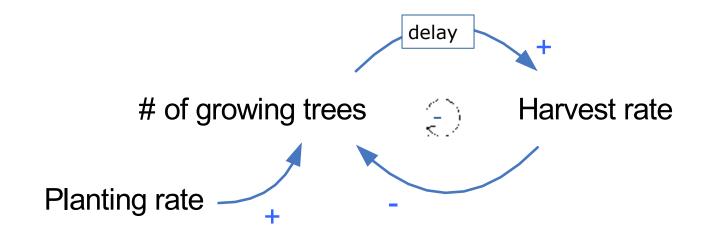
Loop Dominance


- There are systems which have more than one feedback loop within them
- A particular loop in a system of more than one loop is most responsible for the overall behavior of that system
- The dominating loop might shift over time
- When a feedback loop is within another, one loop must dominate
- Stable conditions will exist when negative loops dominate positive loops

CLD with Combined Feedback Loops (Population Growth)


CLD with Nested Feedback Loops (Self-Regulating Biosphere)

■ Evaporation \rightarrow clouds \rightarrow rain \rightarrow amount of water \rightarrow evaporation \rightarrow ...


Exogenous Items

- Items that affect other items in the system but are not themselves affected by anything in the system
- Arrows are drawn from these items but there are no arrows drawn to these items

Delays

- Systems often respond sluggishly
- From the example below, once the trees are planted, the harvest rate can be '0' until the trees grow enough to harvest

Practice: Modeling System Dynamics

- Choose a Case Study in **Different** Domain
- Identify a Problem
- Create a Hypothesis (from Grounded Theory)
- Create Causal Loop Diagrams (with Description and Argumentation)
- Write Conclusion
- Submit before: 20 April 2018 (collective via class coordinator)