RENCANA PEMBELAJARAN SEMESTER RPS ESA 147 – Kalkulus 1 BAHAN PRESENTASI : PPT UEU – Kalkulus 1 – 1 PPT UEU – Kalkulus 1 – 2 PPT UEU – Kalkulus 1 – 3 PPT UEU – Kalkulus 1 – 4 PPT UEU – Kalkulus 1 – 5 PPT UEU – Kalkulus 1 – 6 PPT […]
Author Archives: nanda
MATERI 7
KEGUNAAN TURUNAN – PERTEMUAN 7 I. Garis Singgung 1. Tentukan gradient garis singgung grafik y = x2 – 5x + 6 dititik yang absisnya = 2 dan persamaan garis singgung tersebut. 2. Tentukan persamaan garis singgung grafik x2 + y2 = 25, dititik yang absisnya = 3 dan ordinatnya positip. 3. Tentukan persamaan garis singgung grafik x2 – 2xy […]
MATERI 1
MATERI_I Preliminaries REAL NUMBERSA real number may be either rational or irrational; either algebraic or transcendental; and either positive, negative, or zero. Real numbers are used to measure continuous quantities. They may in theory be expressed by decimal representations that have an infinite sequence of digits to the right of the decimal point; these are often represented in the same form as 324.823122147… The ellipsis (three dots) indicate that there […]
MATERI 2
Fungsi adalah sebuah relasi biner dimana masing-masing anggota dalam himpunan A (domain) hanya mempunyai satu bayangan pada himpunan B ( kodomain).
MATERI 3
MATERI_III Introduction of Limit The student surely can recognize the number that is the limit of this sequence of rational numbers.
MATERI 4
MATERI_IV Limits at Infinity When the variable is f(x), it will become positively or negatively infinite when x approaches some value c. We will write
MATERI 5
MATERI_V Rules for Finding DerivativesBy the derivative of a function f(x), we mean the following limit, if it exists:
MATERI 6
MATERI_VI High OrderDerivativesThe derivative of a power of xis equal to the product of the exponent timesx with the exponent reduced by 1.”
MATERI 8
materi 8 Integral adalah kebalikan dari turunan (derivatif)
MATERI 9
materi 9 Integral adalah kebalikan dari turunan (derivatif)