

Smart, Creative and Entrepreneurial

www.esaunggul.ac.id

REKAYASA GENETIKA IBD 131

By Seprianto S.Pi, M.Si

Pertemuan 13 **DNA Polimorfisme 2**

Sasaran Perkuliahan

- Mahasiswa memahami dan menjelaskan tentang pemanfaatan DNA polimorfisme dalam menentukan keragaman genetik makhluk hidup (Biodivesitas)
- Dapat menjelaskan Tentang RAPD dan kegunaaan dalam Keanekaragaman genetik
- Menjelaskan dan memahami proses pengunaan AFLP dalam menentukan keragaman genetik tanaman
- Pemanfaatan SCAR sebagai marka melekuler

DNA Polimorfisme

- Random Amplified Polymorphic DNA (RAPD)
- Amplified Fragment Length Polymorphism (AFLP)
- Sequence Characterized Amplified Region (SCAR)
- DNA barkoding (Barcoding DNA)

What is RAPD?

RAPD is a PCR-based method which employs single primers of arbitrary nucleotide sequence with 10 nucleotides to amplify anonymous PCR fragments from genomic template DNA

PCR product occurs when:

- The primers anneal in a particular orientation (such that they point towards each other)
- The primers anneal within a reasonable distance of one another (150 -3000 bp)

RAPD

- Primer binds to many locations on the template DNA
- Only when primer binding sites are close and oriented in opposite direction (the primers point toward each other) will amplification take place

RAPD

RAPD

.

100 - 1,500 bases

Primers are just the right distance apart, so fragment is amplified

The nature of RAPD polymorphism

Polymorphic ?

A schematic picture of an agarose gel

 a) nucleotide substitution within target sites may affect the annealing process - either no fragment is detected

or detected fragment is of increased size

b) insertion or deletion of a small fragment of DNA - the amplified fragments are changed in size

Esa Unggul

c) insertion of a large piece of DNA between the primer
-binding sites may exceed the capacity of PCR - no
fragment is detected

Bands Number; Locus Number

Polymorphic VS Monomorphic

Fig. 3. RAPD patterns in hybrids and parents of cross #119 [865 (D) \times 206 (P)]. The amplification products were compared on the basis of molecular size. Lane P and D were fragments from parents. Lane 1-15 were fragments from hybrids, obtained with primers OPT06.

Primer	Sequence fragments	Amplified fragments	Monomorphic fragments	Polymorphic fragments
OPB08	GTCCACACGG	13	5	8
OPT06	CAAGGGCAGA	8	1	7

Esa UnggurAprovit Creative and Entrepreneurial independent loci:

Binary Data

- RAPD bands are scored for presens "1" and absens "0". Doubtful "999"
- Only clear, consistent and polymorphic bands are usually used to create a binary matrix for future statistical analyses

A binary matrix:

	Band 1	Band 2	Band	Band 4	Band 5	Band 6
			3			
Plant 1	1	0	0	1	1	1
Plant 2	0	1	0	1	1	1
Plant 3	1	1	1	0	0	0
Plant 4	1	1	0	1	1	1
Plant 5	0	1	0	999	1	1
		•••				
Plant	1	0	1	0		•••
20		0		0	0	0

ntsys

who we are

what we do

products

contact

dendrogram with ntsys

NTSYS Software Development & IT Management Ltd.

C	. 🖬 🤊	▼ (° ×) ⊽							ra	apd contoh2E - Mici			
0	Home	Insert	Page La	yout Fo	rmulas D)ata Re	view Vie	w					
ſ	🐂 🔏 Cut		Calibri	* 11	· A A	= =	=	🚽 Wrap	Text	General			
Pa	ste 🍼 Fori	oy mat Painter	BI	<u>u</u> - 🖂 -	<u>- A</u> -	E E		📑 Merg	e & Center 👻	🕎 • % • 就			
	Clipboar	d 😡		Font	Gi Gi		Alignr	nent	Gi j	Number			
	16	•	0	f_{x}									
	А	В	С	D	E	F	G	Н	l I	J K			
1	1	20	6										
2		C1	C2	C3	C4	C5	C6						
3	DTA16	0	1	0	0	0	0						
4	DTA28	0	1	0	0	0	0				.	المحلمات	
5	DSA22	0	0	0	0	1	0			In	JUC	data di	
6	DSA35	1	0	1	0	0	0						
7	DKA62	0	1	0	0	0	0			Fy	COL		
8	DKA60	0	1	0	1	1	1				CCI		
9	DPL17	0	0	0	1	1	0						
10	DPL21	1	0	0	1	0	1						
11	DBG1	0	1	1	1	1	1			Tedit 1 1h	-		
12	DBG3	1	1	0	1	0	1		- Cilo	Edit Ontions	Help		_
13	DMT13	1	1	1	1	0	1		File	Eair Options	пер	1	
14	DMT73	1	1	1	1	1	0			New matrix	- 11	Ins. row [Del. row
15	DJP8	1	0	0	0	0	0			New file	E		
16	DJP10	1	0	0	0	1	1			Open file		▼ C	omment
17	DBI11	1	0	0	0	0	0			Import Excel	•	using DDE	
18	DBI1	0	0	1	1	1	0			Save file		using OLE	sing:
19	DLP5	0	1	0	0	1	0			Saverne			
20	DLP12	1	1	0	0	1	0			Save file as	- H	05 0	4
21	DRL 16	1	1	1	0	1	0			Exit			
22	DRL 17	0	1	1	1	0	0		κz		_		
23									D3				
24									113				
Rea	• • She	eet1 / She	et2 🖌 She	et3 🖉 💭					R4				

	<u>C</u> lustering Graphics			Ordination
	<u>G</u> eneral	l		<u>S</u> imilarity
oolVCV SimInt				
	SimQual			
imGend SimQual	Parameters:	Arguments:	<u>^</u>	
	Input file	D:\TEklab2011\DARDAE1.NTS		
	By rows?	X		
	Coefficient	DICE		
	Output file	D:\TEklab2011\DARDAE1SIMQ.NTS		
	Positive code	1,00000	-	
	Compute	se 孝 Help		
			-	
	-			

Options Help)				
2 🛛 🗶	1. ?				
			Graphics		
		9	<u>G</u> eneral		<u>S</u> imilarity
		<u>C</u> lu	stering		Ordination
1	1				
Consen	MST	SAHN			
Coph	NJoin		SAHN		
			Parameters:	Arguments:	
			Input file	D:\TEklab2011\DARDAE2SIMQ.NTS	
			Output tree file	D:\TEklab2011\dardae2sahn.NTS	
			Clustering method	UPGMA	
			In case of ties	FIND	
			Maximum no. tied trees	25	
			Tie telerenee	n 0000000	
			Compute	e ? Help	
			Le .		

Dendrogram based on UPGMA analysis (Jaccard's coefficient) for RAPD data

PRINCIPLE OF AFLP

 The AFLP technique is based on the principle of selectively amplifying a subset of restriction
 fragments from a complex mixture of DNA fragments obtained after digestion of genomic DNA with restriction endonucleases.

Amplified Fragment Length Polymorphism (AFLP)

- Restriction endonuclease digestion of DNA
- Ligation of adaptors with PCR adaptor
- Amplification of ligated fragments
- Separation of the amplified fragments via electrophoresis and visualization
- AFLPs have stable amplification and good repeatability

CHARACTERISTICS OF AFLP -

- dominant marker.
- DNA variation is detected by presence/absence of DNA bands due to:
- a) presence/absence of restriction sites
- b) additional bases (insertion) between two restriction sites are too large

Sequence Characterized Amplified Region (SCAR)

- SCARs are DNA fragments amplified by the PCR using specific 15-30 bp primers, designed from nucleotide sequences established from cloned RAPD fragments linked to a trait of interest.
- By using longer PCR primers, SCARs do not face the problem of low reproducibility generally encountered with RAPDs

Strengths

 The main advantage of SCARs is that they are quick and easy to use. In addition, SCARs have a high reproducibility and are locus-specific. Due to the use of PCR, only low quantities of template DNA are required

Applications

SCARs are locus specific and have been applied in gene mapping studies and marker assisted selection

Weaknesses

Disadvantages include the need for sequence data to design the PCR primers

Introduction **DNA barcoding**

 DNA barcoding is a technology using gene sequences to differentiate species, similar to the way retail stores rely on short, standardized barcodes to differentiate the hundreds of thousands of items they sell

What???

- DNA barcoding is a technique in which species identification is performed by using DNA sequences from a small fragment of the genome,
- with the aim of contributing to a wide range of ecological and conservation studies in which traditional taxonomic identification is not practical
- Short DNA sequences are called as DNA barcodes- ranging from 400- 800 bp.

Successful DNA barcode

- a) Short enough to be quickly sequenced,
- b) Easily identified in all species of organisms.
- c) Variable enough to provide a unique sequence for each species
- d) Size of sequence : 600 700 bp
- e) Universality

Which gene fragments?

