BENEFIT - COST ANALYSIS

MAP ESA UNGGUL UNIVERSITY
Lecturer: M.Cholifihani, MA, Ph.D Sabtu, 18 Mei 2019

BENEFIT-COST ANALYSIS

- Analytical framework used to evaluate public expenditure decision
- Systematic enumeration of all benefits and all cost, tangible and intangible, quantifiable or difficult to measure.
- Prescriptive Model (instead of descriptive model)
- Ex ante Evaluation
- Aims to economic efficiency

The Procedure

The projects to be analyzed are indentified

- All the impacts, both favorable and unfavorable, present and future, on all society are determined
- Values, Favorable impact as Benefits and unfavorable ones as costs
- The net benefits (total benefits minus total costs) is calculated
- The choice is made

Case 1: Accepting or Rejecting a Single Project

- Rehabilitate the office with energy efficiency
- Initial cost is estimated at \$ 175.000
, Benefits from energy savings \$ 150.000
- Maintenance cost will be reduced at $\$ 75.000$
- The net benefits is : + \$ $150.000+\$ 75.000-$ $\$ 175.000=\$ 50.000$
- The Authority must make a simple yes- no decision between rehabilitate the office getting net benefits $\$ 50.000$ or no-rehabilitation with $\$ 0.00$.

Case 2a: Choosing one of a Number of Discrete Alternative Projects

		Benefits (Thousands)				Initial		
Headquarter s	Savings on energy cost	Savings on	Total	Net	Baint-cost	banefits	benefits	Ratio
:---:								

A	$\$ 100$	$\$ 100$	$\$ 500$	$\$ 600$	$\$ 500$	6,00
B	$\$ 500$	$\$ 400$	$\$ 850$	$\$ 1.250$	$\$ 750$	2,50
C	$\$ 200$	$\$ 200$	$\$ 600$	$\$ 800$	$\$ 600$	4,00
D	$\$ 75$	$\$ 25$	$\$ 150$	$\$ 175$	$\$ 100$	2,33
E	$\$ 150$	$\$ 50$	$\$ 325$	$\$ 375$	$\$ 225$	2,50
F	$\$ 200$	$\$ 150$	$\$ 250$	$\$ 400$	$\$ 200$	2,00
G	$\$ 50$	$\$ 75$	$\$ 100$	$\$ 175$	$\$ 125$	3,50
H	$\$ 150$	$\$ 175$	$\$ 275$	$\$ 450$	$\$ 300$	3,00

Case 2b: Choosing the Appropriate Scalle for A Project

Fig. 9-2

Case 3: Accepting or Rejecting a number of Projects, Subject to a Constraint on a Resources

Headquarters	Initial Cost	Net Benefit	(in thousands of dollars) Net benefit/ initial cost	Cumulative initial cost, all projects
A	100	500	5,0	100
C	200	600	3,0	300
G	50	125	2,5	350
H	150	300	2,0	500
E	150	225	1,5	650
B	500	750	1,5	1150
D	75	100	1,3	1225
F	200	200	1,0	1425

Case 3: Accepting or Rejecting a number of Projects, Subject to a Constraint on a Resources

- Capital is limited to \$500.000
- Thre are many possibilities
- Rank the projects according to the index
- Then select projects from the top of the list down, until the $\$ 500.000$ is used up
- Then the selected projects are $\mathrm{A}, \mathrm{C}, \mathrm{G}$, and H due to exhausting the $\$ 500.000$ budget (total net benefit is $\$$ 1.525.000)
- If we choose project B, just only one project and the total benefit just $\$ 750.000$ with the initial cost \$500.000

Benefit/Cost Ratios

- A project will be recommended if B / C ratio is greater than 1 or rejected because the ratio less than 1.
- The largest B / C ratio among competing projects
- When mutually exclusive projects or when resources are constrained, the two criteria may lead into inconsistent choices.

Benefit/Cost Ratios

Project	Benefit	Costs	Net Benefits	B/C Ratio
I	$\$ 10,000$	$\$ 1,000$	$\$ 9,000$	10
II	$\$ 100,000$	$\$ 25,000$	$\$ 75,000$	4

Estimating Benefits and Costs

- Prediction : predict input that will be employed and the outputs that will be achieved all impacts, favorable and unfavorable, must be identified
- Valuation : Unfavorable impacts will be registered as cost, favorable ones as benefits The usual measuring rod is money-unit,dollars Market values VS No Market values (relative prices in the economy)
- Willingness to pay (appropriate measure of Benefits)- Eq. Parking fee VS Parking space

Cost Effectiveness

Calculating cost is easier to quantify than the benefits

- Benefits and costs are hard to compare directly (defence or health projects)
- Opportunity cost

Example

- Apply benefit-cost analysis to a case study of U.S. and European efforts to save lives gasoline by setting maximum speed limits

Conducting a Benefit-Cost Analysis

- Identify alternatives
- Specify objectives
- Identify target groups and beneficiaries
- List all benefits and costs
- Collect data for analysis
- Discount benefits and costs to present value
- Select criterion of choice
- Compare benefits and costs
- Make recommendation

Benefits and Costs of the 55 mph Speed Limit

COSTS

- Hours Driving
$\mathrm{H}=\left[1.04 \mathrm{VM}_{1973} / \mathrm{S}_{1974}-\mathrm{VM}_{1973} / \mathrm{S}_{1973}\right] \times \mathrm{R}$
$=1.95$ billion
$\mathrm{H}=\left[\mathrm{VM}_{1973} / \mathrm{S}_{1974}-\mathrm{VM}_{1973} / \mathrm{S}_{1973}\right] \times \mathrm{R}$
$=1.72$ billion
- Value of Hours
$\$ 5.05 / \mathrm{hr}$ (average wage) $=\$ 9.85$ billion $\$ 1.67 /$ hr (survey) $=\$ 2.89$ billion

Costs of Enforcement
$\$.8$ million
$\$ 12$ million

BENEFITS

Gasoline Saved $\$ 0.718$ cents (price support) $=\$ 2,500$ billion
$\$ 0.528$ cents (market price) $=\$ 1,442$ million

Lives saved
\$1,297.7 million
$\$ 998$ million
, Injuries
$\$ 942.3$ million
\$722 million

- Property damage
$\$ 472$ million
$\$ 236$ million
A Net Benefits $=\$ 2,321.2$
B Net Benefits $=\mathbf{-} \mathbf{\$ 6 , 4 6 2}$
$B / C=1.8$
$B / C=.345$

-TERIMA KASIH

