BENEFIT – COST ANALYSIS

MAP ESA UNGGUL UNIVERSITY Lecturer: M.Cholifihani, MA, Ph.D Sabtu, 18 Mei 2019

BENEFIT-COST ANALYSIS

- Analytical framework used to evaluate public expenditure decision
- Systematic enumeration of all benefits and all cost, tangible and intangible, quantifiable or difficult to measure.
- Prescriptive Model (instead of descriptive model)
- Ex ante Evaluation
- Aims to economic efficiency

The Procedure

- > The projects to be analyzed are indentified
- All the impacts, both favorable and unfavorable, present and future, on all society are determined
- Values, Favorable impact as Benefits and unfavorable ones as costs
- The net benefits (total benefits minus total costs) is calculated
- The choice is made

Case 1: Accepting or Rejecting a Single Project

- Rehabilitate the office with energy efficiency
- Initial cost is estimated at \$ 175.000
- Benefits from energy savings \$ 150.000
- Maintenance cost will be reduced at \$ 75.000
- The net benefits is : +\$ 150.000 +\$75.000 -\$175.000 = \$ 50.000
- The Authority must make a simple yes- no decision between rehabilitate the office getting net benefits \$ 50.000 or no-rehabilitation with \$ 0.00.

Case 2a: Choosing one of a Number of Discrete Alternative Projects

		Benefits (Thousands)			_	
	Initial	Savings on	Savings on	Total	Net	B/C
Headquarter s	Cost	energy cost	maint-cost	banefits	benefits	Ratio
А	\$100	\$100	\$500	\$600	\$500	6,00
В	\$500	\$400	\$850	\$1.250	\$750	2,50
С	\$200	\$200	\$600	\$800	\$600	4,00
D	\$75	\$25	\$150	\$175	\$100	2,33
E	\$150	\$50	\$325	\$375	\$225	2,50
F	\$200	\$150	\$250	\$400	\$200	2,00
G	\$50	\$75	\$100	\$175	\$125	3,50
Н	\$150	\$175	\$275	\$450	\$300	3,00

Case 2b: Choosing the Appropriate Scale for A Project

Case 3: Accepting or Rejecting a number of Projects, Subject to a Constraint on a Resources

		(III thousands of donars)			
Headquarters	Initial	Net	Net benefit/	Cumulative initial	
	Cost	Benefit	initial cost	cost, all projects	
А	100	500	5,0	100	
С	200	600	3,0	300	
G	50	125	2,5	350	
Н	150	300	2,0	500	
E	150	225	1,5	650	
В	500	750	1,5	1150	
D	75	100	1,3	1225	
F	200	200	1,0	1425	

(in thousands of dollars)

Case 3: Accepting or Rejecting a number of Projects, Subject to a Constraint on a Resources

- Capital is limited to \$ 500.000
- Thre are many possibilities
- Rank the projects according to the index
- Then select projects from the top of the list down, until the \$ 500.000 is used up
- Then the selected projects are <u>A, C, G, and H</u> due to exhausting the \$500.000 budget (total net benefit is \$ 1.525.000)
- If we choose project B, just only one project and the total benefit just \$ 750.000 with the initial cost \$500.000

Benefit/Cost Ratios

- A project will be recommended if B/C ratio is greater than 1 or rejected because the ratio less than 1.
- The largest B/C ratio among competing projects
- When mutually exclusive projects or when resources are constrained, the two criteria may lead into inconsistent choices.

Benefit/Cost Ratios

Project	Benefit	Costs	Net Benefits	B/C Ratio
	\$10,000	\$1 000	000 02	10
·	φ10,000	ψ1,000	ψ0,000	10
	\$100,000	\$25,000	\$75,000	4

Estimating Benefits and Costs

- Prediction : predict input that will be employed and the outputs that will be achieved all impacts, favorable and unfavorable, must be identified
- Valuation : Unfavorable impacts will be registered as cost, favorable ones as benefits The usual measuring rod is money-unit,dollars Market values VS No Market values (relative prices in the economy)
- Willingness to pay (appropriate measure of Benefits) – Eq. Parking fee VS Parking space

Cost Effectiveness

- Calculating cost is easier to quantify than the benefits
- Benefits and costs are hard to compare directly (defence or health projects)
- Opportunity cost

Example

 Apply benefit-cost analysis to a case study of U.S. and European efforts to save lives gasoline by setting maximum speed limits

Conducting a Benefit-Cost Analysis

- Identify alternatives
- Specify objectives
- Identify target groups and beneficiaries
- List all benefits and costs
- Collect data for analysis
- Discount benefits and costs to present value
- Select criterion of choice
- Compare benefits and costs
- Make recommendation

Benefits and Costs of the 55 mph Speed Limit

COSTS

 Hours Driving H = [1.04VM₁₉₇₃/S₁₉₇₄ - VM₁₉₇₃/S₁₉₇₃] x R = 1.95 billion H = [VM₁₉₇₃/S₁₉₇₄ - VM₁₉₇₃/S₁₉₇₃] x R = 1.72 billion
 Value of Hours \$5.05/hr (average wage) = \$9.85 billion \$1.67/hr (survey) = \$2.89 billion

Costs of Enforcement \$.8 million \$12 million

BENEFITS

Gasoline Saved \$0.718 cents (price support) = \$2,500 billion \$0.528 cents (market price) = \$1,442 million

- Lives saved
 \$1,297.7 million
 \$998 million
- Injuries
 \$942.3 million
 \$722 million
- Property damage
 \$472 million
 \$236 million
- A Net Benefits = \$2,321.2B Net Benefits = - \$6,462

B/C = 1.8B/C = .345

TERIMA KASIH