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Chapter 4
Time-Dependent Failure Models

• 4.1 The Weibull Distribution
• 4.2 The Normal Distribution
• 4.3 The Lognormal Distribution
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4.1 The Weibull Distribution
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where Γ(x) is the gamma function:
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Figure 4.1a
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Figure 4.1b
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Figure 4.1c
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Figure 4.1d
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Figure 4.2a
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Figure 4.2b
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Figure 4.2c
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IFR, Approaches normal 
distribution; symmetrical

3≤ß≤4

IFR, convexß>2

Rayleigh distribution (LFR) ß=2

IFR, concave1<ß<2

Exponential distribution (CFR)ß=1

Decreasing failure rate (DFR)0<ß<1

PropertyValue
Table 4.1 Weibull Parameter
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Example 4.1 A compressor with a hazard rate function 
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In this case, ß=2, θ=1000 hr.

For a desired 0.99 reliability:

The design life is given by

From Eqs. (4.4) and (4.5),
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From Table A.9 in the Appendix.
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4.1.1 Design Life, Median and Mode
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The median time to failure is obtained when R = 0.5,

Note: B1 life = t0.99, B.1 life = t0.999

KMUTT 15CPE 614 Reliability Engineering

( ) ( )tff
t 0

* maxt               
≥

=

( )[ ] ( )4.8     
1for                      0
 1for       1-1           

1

mode 





≤
>

=
β
ββθ β

t

which results in

The mode of the distribution: t *
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Example 4.2 A failure process as a Weibull failure 
distribution with a shape parameter = 1/3 and a scale 
parameter = 16,000. 
Solution:
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1. The reliability function is

2. β = 1/3, a decreasing failure rate indicating high 
infant mortality.
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( ) hr 18.710.90 ln-16,000 3 ==Gt
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Since the distribution is highly skewed, the median 
provides a better average. The mode is zero because ß<1.

5. The characteristic life is 16,000 hr. Therefore 63 
percent of the failures will occur by this time.

6. If a 90 percent reliability is desired, the design life is

7. Its B1 life is (16,000)(-ln 0.99)3 = 0.0162 hr, 
indicating a high percentage of early failures.
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4.1.2 Burn-In Screening for Weibull
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For a 10-hr burn-in period:

For R =0.90, the design life tR can be obtained:

( ) 90.010 =RtR
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4.1.3 Failure Modes

For a system consisting of n components connected in
series or with n independent failure modes. Each mode is 

an independent Weibull failure distribution with β and θi .
The system failure function is:

with shape parameter = β, and characteristic life is:
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Example 4.3 A system consists of five modules, 
where each has a Weibull failure distribution:
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The reliability function for the engine is given by
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4.1.4 Identical Weibull Components
For a system consisting of n serially connected and 
independent components with identical failure rate 
functions.
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Example 4.4 A system with 4 series connectors each 
with a Weibull failure rate with β = 3/4 and θ = 2000 hr. 

System reliability at 150 hours of operation is:
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4.1.5 The Three-Parameter Weibull

t0 = minimum life, where T > t0 
This three-parameter Weibull distribution assumes
that no failures exist prior to time t0.
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and the design life tR is

t0= location parameter.
The variance of this distribution is the same as for the
2-parameter model, but

To transform the 3-parameter Weibull into the
2-parameter Weibull: t’ = t-t0
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Example 4.5: The 3-parameter Weibull has β =4, 
t0 = 100, and θ = 780.
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We obtain:
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4.1.6 Redundancy with Weibull Failures

For a system with 2 identical and independent 
components connected in parallel, the system reliability is:
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The failure rate for this system (derived in App 4D) is:

The system does not have a Weibull failure rate.
However, when t is large, the failure rate is approximated
as a Weibull distribution.
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Example 4.6 two fuel pumps, each has a Weibull
failure distribution with β = ½ and θ = 1000 hr.

Find system reliability for 100-hr operation and the 
system MTTF.

Solution:
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Note: A fuel pump has Rs(t) = 0.7288, MTTF = 2000
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4.2 The Normal Distribution
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Figure 4.3a
KMUTT 32CPE 614 Reliability Engineering

Figure 4.3b
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Figure 4.3c
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4.3 The Lognormal Distribution

The mean, variance and the mode of the lognormal are:
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Figure 4.4a
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Figure 4.4b
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Figure 4.4c
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Example 4.7
Solution:
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Find t0.95 such Pr {T ≥ t0.95} = 0.95. Standardizing,

Using the normal tables: (t0.95-120)/14 = -1.645, or 
t0.95=96.97 hr ≈ 8 (12-hr) days.
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Example 4.8
Solution:
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We are given Pr {25,000 ≤ T ≤ 35,00} = 0.905. 
Standardizing,

From the normal tables and the symmetry of the 
distribution,
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