

Value	Property
0<β<1	Decreasing failure rate (DFR)
ß=1	Exponential distribution (CFR)
1 <b<2< td=""><td>IFR, concave</td></b<2<>	IFR, concave
ß=2	Rayleigh distribution (LFR)
ß>2	IFR, convex
3≤β≤4	IFR, Approaches normal distribution; symmetrical

Example 4.1 A compressor with a hazard rate function $\lambda(t) = \frac{2}{1000} \left(\frac{t}{1000}\right) = 2 \times 10^{-6} t$ In this case, $\beta = 2$, $\theta = 1000$ hr. For a desired 0.99 reliability: $R(t) = e^{-(t/1000)^2} = 0.99$ The design life is given by $t_R = 1000 \sqrt{-\ln 99} = 100.25$ hr From Eqs. (4.4) and (4.5), $MTTF = 1000 \Gamma\left(1 + \frac{1}{2}\right) = 886.23$ hr KMUTT CPE 614 Reliability Engineering 12

Since the distribution is highly skewed, the median provides a better average. The mode is zero because $\beta < 1$. 4. $\sigma^2 = (16,000)^2 \{ \Gamma(7) - [\Gamma(4)]^2 \} = 175,104 \times 10^6$ $\sigma = 418 4 \times 10^3$ hr

5. The characteristic life is 16,000 hr. Therefore 63 percent of the failures will occur by this time.

6. If a 90 percent reliability is desired, the design life is

 $t_{c} = 16,000 (-\ln 0.90)^{3} = 18.71$ hr

7. Its B1 life is $(16,000)(-\ln 0.99)^3 = 0.0162$ hr, indicating a high percentage of early failures.

KMUTT

17

4.1.3 Failure Modes

For a system consisting of *n* components connected in series or with *n* independent failure modes. Each mode is an independent Weibull failure distribution with β and θ_i . The system failure function is:

$$\lambda(t) = \sum_{i=1}^{n} \frac{\beta}{\theta_i} \left(\frac{t}{\theta_i}\right)^{\beta-1} = \beta t^{\beta-1} \left[\sum_{i=1}^{n} \left(\frac{1}{\theta_i}\right)^{\beta}\right]$$
(4.9)

with shape parameter = β , and characteristic life is:

Example 4.3 A system consists of five modules, where each has a Weibull failure distribution: $\theta = \left| \left(\frac{1}{3600} \right)^{1.5} + \left(\frac{1}{7200} \right)^{1.5} + \left(\frac{1}{5850} \right)^{1.5} + \left(\frac{1}{4780} \right)^{1.5} + \left(\frac{1}{9300} \right)^{1.5} \right|^{-1/1.5} = 1842.7$ and $MTTF = 1842.7\Gamma\left(1 + \frac{2}{3}\right) = 1664.5$ cycles $t_{mad} = (1842.7)(0.69315)^{1/1.5} = 1443.2$ cycles

The reliability function for the engine is given by

$$R(t) = \exp\left[-\left(\frac{t}{1842.7}\right)^{1.5}\right]$$

20

4.1.4 Identical Weibull Components

For a system consisting of *n* serially connected and independent components with identical failure rate functions. $\lambda(t) = \frac{\beta}{\theta} \left(\frac{t}{\theta}\right)^{\beta-1}$ (4.10)

System failure rate is $\lambda(t) = \sum_{i=1}^{n} \frac{\beta}{\theta} \left(\frac{t}{\theta}\right)^{\beta-1} = \frac{n\beta}{\theta^{\beta}} (t)^{\beta-1}$ and $R(t) = \exp\left[-n\left(\frac{t}{\theta}\right)^{\beta}\right]$ (4.11) **Example 4.4** $R(150) = \exp\left[-4\left(\frac{150}{2000}\right)^{3/4}\right] = 0.5637$

KMUTT

CPE 614 Reliability Engineering

Example 4.4 A system with 4 series connectors each with a Weibull failure rate with $\beta = 3/4$ and $\theta = 2000$ hr.

System reliability at 150 hours of operation is:

$$R(150) = \exp\left[-4\left(\frac{150}{2000}\right)^{3/4}\right] = 0.5637$$

KMUTT

CPE 614 Reliability Engineering

4.1.5 The Three-Parameter Weibull

 t_0 = minimum life, where $T > t_0$ This three-parameter Weibull distribution assumes that no failures exist prior to time t_0 .

$$R(t) = \exp\left[-\left(\frac{t-t_0}{\theta}\right)^{\beta}\right] \quad t \ge t_0 \quad (4.12)$$

and $\lambda(t) = \frac{\beta}{\theta}\left[-\left(\frac{t-t_0}{\theta}\right)^{\beta-1}\right] \quad t \ge t_0 \quad (4.13)$

CPE 614 Reliability Engineering

KMUTT

21

23

 t_0 = location parameter.

The variance of this distribution is the same as for the 2-parameter model, but

$$MTTF = t_0 + \theta \Gamma \left(1 + \frac{1}{\beta}\right) \qquad (4.14)$$

$$t_{med} = t_0 + \theta (0.69315)^{1/\beta} \qquad (4.15)$$

and the design life t_R is

$$t_R = t_0 + \theta (-\ln R)^{1/\beta}$$
 (4.16)

To transform the 3-parameter Weibull into the 2-parameter Weibull: $t' = t - t_0$

KMUTT CPE 614 Reliability Engineering 22

Example 4.5: The 3-parameter Weibull has
$$\beta = 4$$
,
 $t_0 = 100$, and $\theta = 780$.
We obtain:

$$MTTF = 100 + 780t \left(1 + \frac{1}{4}\right) = 806.99 \text{ hr}$$
 $t_{acd} = 100 + 780t \left(1 + \frac{1}{4}\right) = 806.99 \text{ hr}$
 $t_{acd} = 100 + 780t \left(1 + \frac{1}{4}\right) = 806.99 \text{ hr}$
 $t_{acd} = 100 + 780t \left(1 + \frac{1}{4}\right) = \frac{1}{2} = 39.384.6$
 $\sigma = 198.3 \text{ hr}$
 $R(t) = e^{-(tor)t}$
 $R(t) = e$

